$= 1.4 \times 0.3 \times 0.4$

 $= 0.168 \text{m}^3$

Exposed area = (Length x Half the effective height x 2) + (Width x Half the effective height x 2) + Base area

=
$$(1.4 \times 0.4 \times 2) + (0.3 \times 0.4 \times 2) + (1.4 \times 0.3)$$

= $1.78m2$

Time = 257min

Infiltration rate (f) = $0.168/1.78/257 = 3.67E^{-04}$ m/min; f = $6.11E^{-06}$ m/sec

Based on the Infiltration rate and storage calculations, a Soakaway of 1.2x1.2x1.5m dp was completed 5m from the building to disperse 50% of the extension roof water.

An 8m x 0.4m Raingarden is to be provided to disperse the second 50% of roof rain water.

If we can be of any further assistance or you require clarification on the above, please do not hesitate to contact the undersigned.

Yours sincerely,

THOMAS O'NEILL

Chartered Engineer

for ONCE Consultant Engineers Limited.

arer orail

2/4 22/ 5859

ONCE CIVIL & STRUCTURAL LTD

4 Bridgecourt Office Park Proj: 5859
Walkinstown Avenue Ref : soakaw

Dublin 12 Ireland D12 Y981

Tel:01 4057001 Date: 17/10/22

Soakaway design

Soakaway location

 $= 50 \text{ m}^2$ Area draining to soakaway Invert to soakaway = 0.4 mSoakaway type - Pit D_{e} Effective storage depth $= 1.1 \, \text{m}$ Soil infiltration rate = 0.00055 m/sRainfall ratio = 0.25 Permeability of fill = 30 % Rainfall return period = 1 in 100 year

- Dublin

Length increment = 0.1 m (computed length will be rounded to this value)

Design calculations to BRE Digest 365 (February 2016)

Assuming square pit, Length of soakaway L = 0.9 mBreadth of soakaway B = 0.9 m

Effective outflow area $a_{s50} = 0.5*((2*B*D_e)+(2*L*D_e))$

= 0.5*((2*0.9*1.1)+(2*0.9*1.1))

= 1.98 m²

Storage volume $V_s = L^*B^*D_e^*P_{er}/100$

= 0.9*0.9*1.1*30/100

 $= 0.27 \,\mathrm{m}^3$

Time of emptying half storage volume

 $t_{s50} = V_s^*0.5/(a_{s50}^*f^*60^*60)$

= 0.27*0.5/(1.98*0.00055*60*60)

= 0.0 hrs.

D	R	I	0	S	A _{max}
min.	m	m³	m³	m³	m ²
10	0.018	0.89	0.65	0.24	52
20	0.024	1.22	1.31	-	-
30	0.029	1.46	1.96	-	-
40	0.033	1.65	2.61	-	-
60	0.04	2	3.92	-	-
120	0.052	2.61	7.84	-	-
240	0.067	3.37	15.68	-	-
360	0.077	3.87	23.52	-	-
600	0.092	4.58	39.2	-	-
1440	0.13	6.26	94.09	-	-

4/4 22/ 5859