Ref: 22/5859
4 Bridgecourt Office Park
Walkinstown Avenue
Dublin 12 D12 Y981
$2^{\text {nd }}$ October 2023
Tel: 014264883 / 4297971
Email: mail@once.co
Web: once.co

Re: \quad Drainage Report 13 Wainsfort Avenue, Dublin 6.

ONCE Consultant Engineers monitored a BRE Digest365 infiltration test during construction for the design of a Surface Water Soakaway design.

The property is 13 Wainsfort Avenue, Dublin 6

A trial pit was excavated to 1.5 m below ground level by the Building Contractor on $13^{\text {th }}$ October 2022. The pit was inspected by Thomas O Neill C.Eng of ONCE Consultant Engineers on $17^{\text {th }}$ October 2022.

The ground comprised 200mm topsoil 200 mm to 800 mm the subsoil is a Clay with cobbles. From 800 mm to 1500 mm the content of cobbles is higher.

No Water was present in the pit.

A trial hole was excavated

Length 1.4 m
Width 0.3 m
Depth 1.5m

The base of the pit was filled with water to a depth of 800 mm and the drop in the water level was followed over time The time required for the level to fall from 75% full to 25% full (ie 50% drop) - from a water depth of 0.6 m to a water depth of 0.2 m is estimated to be 257 min .

Table 1 - Time taken for water level to fall Elapsed Time (Mins) Depth of Water (mm)
151310
204250
278200

Infiltration rate $(\mathrm{f})=$ Volume of water used/unit exposed area /unit time
Volume $=$ pit length $(m) \times$ Width (m) \times Drop in water level (m)
$=1.4 \times 0.3 \times 0.6$
$=0.252 \mathrm{~m}^{3}$

Exposed area $=($ Length \times Half the effective height $\times 2)+($ Width \times Half the effective height $x 2$) + Base area
$=(1.4 \times 0.4 \times 2)+(0.3 \times 0.4 \times 2)+(1.4 \times 0.3)$
$=1.78 \mathrm{~m} 2$

Time $=257 \mathrm{~min}$
Infiltration rate $(f)=0.252 / 1.78 / 257=3.7 E-04 \mathrm{~m} / \mathrm{min} ; f=5.5 \mathrm{E}^{-04} \mathrm{~m} / \mathrm{sec}$
Based on the Infiltration rate and storage calculations, a Soakaway of $1.2 \times 1.2 \times 1.5 \mathrm{~m}$ dp was instructed to be completed 5 m from the building.

If we can be of any further assistance or you require clarification on the above, please do not hesitate to contact the undersigned.

Yours sincerely,

THOMAS O'NEILL
Chartered Engineer
for ONCE Consultant Engineers Limited.

Trial Pit 1.5 m deep no water table

Trial Pit 1.5 m deep during test

ONCE CIVIL \& STRUCTURAL LTD
4 Bridgecourt Office Park
Proj: 5859
Walkinstown Avenue
Ref: soakaw
Dublin 12
Ireland
D12 Y981
Tel:01 4057001

Soakaway design

Soakaway location
Area draining to soakaway

- Dublin

Invert to soakaway
$\mathrm{A}=50 \mathrm{~m}^{2}$
Soakaway type
$=0.4 \mathrm{~m}$
Effective storage depth
Soil infiltration rate
Rainfall ratio
$=1.1 \mathrm{~m}$

Permeability of fill
$r=0.25$
Rainfall return period
$P_{\text {er }}=30 \%$
Length increment
= 1 in 100 year
$=0.1 \mathrm{~m}$ (computed length will be rounded to this value)

Design calculations to BRE Digest 365 (February 2016)
Assuming square pit,

Length of soakaway	L	0.9 m
Breadth of soakaway	B	0.9 m
Effective outflow area	$\mathrm{a}_{\text {s50 }}$	$\begin{aligned} & =0.5^{*}\left(\left(2^{*} B^{*} \mathrm{D}_{\mathrm{e}}\right)+\left(2^{*} \mathrm{~L}^{*} \mathrm{D}_{\mathrm{e}}\right)\right) \\ & =0.5^{*}\left(\left(2^{*} 0.9^{*} 1.1\right)+\left(2^{*} 0.9^{*} 1.1\right)\right) \\ & =1.98 \mathrm{~m}^{2} \end{aligned}$
Storage volume	$\mathrm{V}_{\text {s }}$	$\begin{aligned} & =L^{*} \mathrm{~B}^{*} \mathrm{D}_{\mathrm{e}}{ }^{*} \mathrm{P}_{\mathrm{er}} / 100 \\ & =0.9^{*} 0.9^{*} 1.1 .1^{*} 30 / 100 \\ & =0.27 \mathrm{~m}^{3} \end{aligned}$
Time of emptying half storage volume	$\mathrm{t}_{\text {s50 }}$	$\begin{aligned} & =\mathrm{V}_{\mathrm{s}}^{*} 0.5 /\left(\mathrm{a}_{\mathrm{s50}}{ }^{*} \mathrm{f}^{*} 60^{*} 60\right) \\ & =0.27^{*} 0.5 /\left(1.98^{*} 0.00055^{*} 60^{*} 60\right) \\ & =0.0 \mathrm{hrs} . \end{aligned}$

D min.	$\begin{aligned} & \mathbf{R} \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~m}^{3} \end{aligned}$	$A_{\text {max }}$
10	0.018	0.89	0.65	0.24	52
20	0.024	1.22	1.31	-	-
30	0.029	1.46	1.96	-	-
40	0.033	1.65	2.61	-	-
60	0.04	2	3.92	-	-
120	0.052	2.61	7.84	-	-
240	0.067	3.37	15.68	-	-
360	0.077	3.87	23.52	-	-
600	0.092	4.58	39.2	-	-
1440	0.13	6.26	94.09	-	-

