Horganlynch Consulting Engineers		Page 1
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Dialilage
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland
Return Period (years) 100 PIMP (%) 95
M5-60 (mm) 17.000 Add Flow / Climate Change (%) 20
Ratio R 0.300 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 2.000
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Inverts

Network Design Table for Storm

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	k	HYD	DIA	Secti	on Typ	e Auto	•
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)			Desig	m
S1.000	3.000	0.015	200.0	0.004	5.00		0.0	0.600	0	150	Pipe/	Condui	t 🔒	
S1.001	15.286	0.076	200.0	0.000	0.00		0.0	0.600	0	150	Pipe/	Condui	t 🥚	
S2.000	10.406	0.083	125.0	0.026	5.00		0.0	0.600	0	150	Pipe/	Condui	t 🔒	
S1.002	12.578	0.070	179.7	0.000	0.00		0.0	0.600	0	150	Pipe/	Condui	t 🙆	
S1.003	11.854	0.059	200.9	0.000	0.00		0.0	0.600	0	150	Pipe/	Condui		
S3.000	8.273	0.041	201.8	0.026	5.00		0.0	0.600	0	150	Pipe/	Condui	t 🙆	
				N∈	etwork	Resu	lts T	able						
PN	Ra	in 7	r.c.	US/IL Σ	I.Area	ΣΙ	Base	Foul	Add	Flow	Vel	Cap	Flow	
	(mm/	hr) (n	nins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/	(s)	(m/s)	(1/s)	(1/s)	
S1.0	00 50	0.00	5.07	35.700	0.004		0.0	0.0		0.1	0.71	12.5	0.6	
S1.0	01 50	0.00	5.43	35.685	0.004		0.0	0.0		0.1	0.71	12.5	0.6	
S2.0	00 50	0.00	5.19	35.700	0.026		0.0	0.0		0.7	0.90	15.9	4.1	
S1.0	02 50	.00	5.71	35.609	0.029		0.0	0.0		0.8	0.75	13.2	4.8	
S1.0	03 50	.00	5.99	35.539	0.029		0.0	0.0		0.8	0.71	12.5	4.8	
s3.0	00 50	0.00	5.20	35.650	0.026		0.0	0.0		0.7	0.70	12.4	4.1	
				0	1982-2	2020	Innov	yze						

Horganlynch Consulting Engineers		Page 2
Tellengana	SCHOLARSTOWN APARTMENTS	
Blackrock Road	DUBLIN	
Cork		Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Diamage
Innovyze	Network 2020.1.3	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
S1.004	13.855	0.069	200.8	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	<u> </u>
S1.005	14.670	0.073	201.0	0.013	0.00		0.0	0.600	0	150	Pipe/Conduit	ă
S1.006	7.269	0.036	201.9	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	ă
S1.007	10.818	0.072	150.3	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	•
S4.000	10.535	0.053	198.8	0.008	5.00		0.0	0.600	0	225	Pipe/Conduit	•
S1.008	36.411	0.182	200.0	0.038	0.00		0.0	0.600	0	225	Pipe/Conduit	•
\$5.000	11.439	0.057	200.7	0.006	5.00		0.0	0.600	0	225	Pipe/Conduit	•
S1.009	26.223	0.175	149.8	0.028	0.00		0.0	0.600	0	225	Pipe/Conduit	•
S6.000	5.919	0.039	150.0	0.013	5.00		0.0	0.600	o	150	Pipe/Conduit	•
S1.010	47.348	0.316	149.8	0.066	0.00		0.0	0.600	0	225	Pipe/Conduit	•
S7.000	5.407	0.054	100.1	0.023	5.00		0.0	0.600	0	150	Pipe/Conduit	•

Network Results Table

PN	Rain	T.C.	US/IL	Σ	I.Area	ΣΙ	Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)		(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S1.004	50.00	6.32	85.480		0.055		0.0	0.0	1.5	0.71	12.5	8.9	
S1.005	50.00	6.67	85.411		0.068		0.0	0.0	1.8	0.71	12.5	11.1	
S1.006	50.00	6.84	85.338		0.068		0.0	0.0	1.8	0.70	12.4	11.1	
\$1.007	50.00	7.06	85.302		0.068		0.0	0.0	1.8	0.82	14.4	11.1	
S4.000	50.00	5.19	85.300		0.008		0.0	0.0	0.2	0.92	36.7	1.3	
S1.008	50.00	7.72	85.230		0.115		0.0	0.0	3.1	0.92	36.6	18.7	
S5.000	50.00	5.21	85.200		0.006		0.0	0.0	0.2	0.92	36.6	1.0	
S1.009	50.00	8.13	85.048		0.149		0.0	0.0	4.0	1.07	42.4	24.2	
\$6.000	50.00	5.12	85.000		0.013		0.0	0.0	0.4	0.82	14.5	2.2	
S1.010	50.00	8.87	84.873		0.229		0.0	0.0	6.2	1.07	42.4	37.2	
\$7.000	50.00	5.09	85.000		0.023		0.0	0.0	0.6	1.00	17.7	3.8	
				(C	1982-2	020	Innov	1720					

Horganlynch Consulting Engineers		Page 3
Tellengana Blackrock Road	SCHOLARSTOWN APARTMENTS DUBLIN	
Cork		Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Diamage
Innovyze	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.011	20.570	0.137	150.1	0.006	0.00	0.0	0.600	0	225	Pipe/Conduit	•
S8.000	9.187	0.061	150.0	0.005	5.00	0.0	0.600	0	100	Pipe/Conduit	a
S8.001	10.523	0.070	150.3	0.000	0.00	0.0	0.600	0	100	Pipe/Conduit	•
S9.000	5.151	0.026	200.0	0.009	5.00	0.0	0.600	0	150	Pipe/Conduit	•
S8.002	10.750	0.072	149.3	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	8
S8.003	8.146	0.054	150.9	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	8
S10.000	3.006	0.030	100.0	0.013	5.00	0.0	0.600	0	150	Pipe/Conduit	•
S8.004	9.853	0.066	149.3	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	•
S1.012	3.326	0.022	151.2	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	A

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.011	50.00	9.19	84.557	0.258	0.0	0.0	7.0	1.06	42.3	41.9	
S8.000	50.00	5.24	85.650	0.005	0.0	0.0	0.1	0.63	4.9	0.8	
S8.001	50.00	5.53	85.604	0.005	0.0	0.0	0.1	0.62	4.9	0.8	
s9.000	50.00	5.12	85.650	0.009	0.0	0.0	0.3	0.71	12.5	1.5	
\$8.002	50.00	5.74	85.534	0.014	0.0	0.0	0.4	0.82	14.5	2.3	
\$8.003	50.00	5.91	85.462	0.014	0.0	0.0	0.4	0.82	14.4	2.3	
S10.000	50.00	5.05	85.650	0.013	0.0	0.0	0.4	1.00	17.8	2.1	
S8.004	50.00	6.11	85.408	0.028	0.0	0.0	0.7	0.82	14.5	4.5	
S1.012	50.00	9.26	84.420	0.285	0.0	0.0	7.7	0.81	14.4«	46.4	

Horganlynch Consulting Engineers		Page 4
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022 File CL12 - SUDs System Calcu	Designed by JG Checked by KC	Drainage
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	86.000	0.300	Open Manhole	1200	S1.000	85.700	150				
SI	86.000	0.315	Open Manhole	1200	S1.001	85.685	150	S1.000	85.685	150	
54	86.000	0.300	Open Manhole	1200	S2.000	85.700	150				
S2	86.000	0.391	Open Manhole	1200	S1.002	85.609	150	S1.001	85.609	150	
								S2.000	85.617	150	8
53	86.000	0.461	Open Manhole	1200	\$1.003	85.539	150	S1.002	85.539	150	
S6	86.000	0.350	Open Manhole	1200	s3.000	85.650	150				
S4	86.000	0.520	Open Manhole	1200	S1.004	85.480	150	\$1.003	85.480	150	
								s3.000	85.609	150	129
S5	86.000	0.589	Open Manhole	1200	S1.005	85.411	150	S1.004	85.411	150	
S10	86.000	0.662	Open Manhole	1200	S1.006	85.338	150	S1.005	85.338	150	
56	86.000	0.698	Open Manhole	1200	S1.007	85.302	150	S1.006	85.302	150	
S10	86.000	0.700	Open Manhole	1200	\$4.000	85.300	225				
S7	86.000	0.770	Open Manhole	1200	S1.008	85.230	225	S1.007	85.230	150	
								S4.000	85.247	225	17
S12	86.000	0.800	Open Manhole	1200	S5.000	85.200	225				
58	86.000	0.952	Open Manhole	1200	S1.009	85.048	225	\$1.008	85.048	225	
								\$5.000	85.143	225	95
S14	86.000	1.000	Open Manhole	1200	\$6.000	85.000	150				
59	86.000	1.127	Open Manhole	1200	S1.010	84.873	225	\$1.009	84.873	225	
								S6.000	84.961	150	13
S16	86.000	1.000	Open Manhole	1200	S7.000	85.000	150				
S10	86.000	1.443	Open Manhole	1200	S1.011	84.557	225	S1.010	84.557	225	
								\$7.000	84.946	150	314
S18	86.000	0.350	Open Manhole	1200	S8.000	85.650	100				
S18	86.000	0.411	Open Manhole	1200	S8.001	85.604	100	S8.000	85.589	100	
S20	86.000	0.350	Open Manhole	1200	59.000	85.650	150				
S19	86.000	0.466	Open Manhole	1200	S8.002	85.534	150	S8.001	85.534	100	
								59.000	85.624	150	90
S23	86.000	0.538	Open Manhole	1200	\$8.003	85.462	150	58.002	85.462	150	
S22	86.000	0.350	Open Manhole	1200	S10.000	85.650	150				
S20	86.000	0.592	Open Manhole	1200	S8.004	85.408	150	\$8.003	85.408	150	
				1 / W _				S10.000	85.620	150	212
S11	86.000	1.580	Open Manhole	1200	S1.012	84.420	150	S1.011	84.420	225	

Horganlynch Consulting Engineers		Page 5
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022 File CL12 - SUDs System Calcu	Designed by JG Checked by KC	Drainage
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	Pipe Out PN Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
s	86.000	1.602	Open Manhole	0	OUTFALL		S8.004 S1.012	85.342 84.398	150 150	922

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1	712249.794	726749.208	712249.794	726749.208	Required	
S1	712252.595	726750.284	712252.595	726750.284	Required	
S4	712254.871	726726.334	712254.871	726726.334	Required)
S2	712258.375	726736.133	712258.375	726736.133	Required	1
s3	712270.844	726737.782	712270.844	726737.782	Required	
\$6	712285.303	726732.859	712285.303	726732.859	Required	1
S4	712282.361	726740.591	712282.361	726740.591	Required	1
\$5	712285.458	726754.095	712285.458	726754.095	Required	\ -
S10	712300.094	726755.088	712300.094	726755.088	Required	
S6	712307.233	726756.461	712307.233	726756.461	Required	8
S10	712309.856	726749.104	712309.856	726749.104	Required	1

Horganlynch Consulting Engineers		Page 6
Tellengana Blackrock Road	SCHOLARSTOWN APARTMENTS DUBLIN	
Cork Date 29/09/2022	Designed by JG	Micro
File CL12 - SUDs System Calcu	Checked by KC	Drainage
Innovyze	Network 2020.1.3	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S7	712318.027	726755.754	712318.027	726755.754	Required	
S12	712309.484	726729.654	712309.484	726729.654	Required	2 T
S8	712314.737	726719.492	712314.737	726719.492	Required	N/
S14	712289.561	726717.583	712289.561	726717.583	Required	
S9	712289.710	726711.666	712289.710	726711.666	Required	1
S16	712246.226	726702.541	712246.226	726702.541	Required	
S10	712244.563	726697.395	712244.563	726697.395	Required	1
S18	712236.278	726744.471	712236.278	726744.471	Required	
S18	712234.309	726735.498	712234.309	726735.498	Required	I I Ø
S20	712236.127	726728.440	712236.127	726728.440	Required	1
S19	712232.118	726725.206	712232.118	726725.206	Required	Jan .
S23	712229.537	726714.770	712229.537	726714.770	Required	1
S22	712232.403	726706.512	712232.403	726706.512	Required	1
S20	712229.399	726706.626	712229.399	726706.626	Required	<u> </u>

Horganlynch Consulting Engineers		Page 7
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Diamage
Innovyze	Network 2020.1.3	

MH	Manhole	Manhole	Intersection	Intersection	Manhole	Layout
Name	Easting	Northing	Easting	Northing	Access	(North)
	(m)	(m)	(m)	(m)		

S11 712224.017 726698.374 712224.017 726698.374 Required

No Entry

s 712220.714 726697.985

Horganlynch Consulting Engineers		Page 8
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	The state of the s
File CL12 - SUDs System Calcu	Checked by KC	Drainage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

Upstream Manhole

						No. of the last			
PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH I	DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection		(mm)
S1.000	0	150	S1	86.000	85.700	0.150	Open Manhole	9	1200
S1.001	0	150	S1	86.000	85.685	0.165	Open Manhole	9	1200
S2.000	0	150	S4	86.000	85.700	0.150	Open Manhole	Э	1200
S1.002	0	150	S2	86.000	85.609	0.241	Open Manhole	Э	1200
S1.003	0	150	S3	86.000	85.539	0.311	Open Manhole	е	1200
s3.000	0	150	S6	86.000	85.650	0.200	Open Manhole	Э	1200
S1.004	0	150	S4	86.000	85.480	0.370	Open Manhole	е	1200
S1.005	0	150	S5	86.000	85.411	0.439	Open Manhole	9	1200
S1.006	0	150	S10	86.000	85.338	0.512	Open Manhole	9	1200
S1.007	0	150	S6	86.000	85.302	0.548	Open Manhole	е	1200
\$4.000	0	225	S10	86.000	85.300	0.475	Open Manhole	9	1200
S1.008	0	225	s7	86.000	85.230	0.545	Open Manhole	е	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	3.000	200.0	S1	86.000	85.685	0.165	Open Manhole	1200
S1.001	15.286	200.0	S2	86.000	85.609	0.241	Open Manhole	1200
S2.000	10.406	125.0	S2	86.000	85.617	0.233	Open Manhole	1200
S1.002	12.578	179.7	S3	86.000	85.539	0.311	Open Manhole	1200
S1.003	11.854	200.9	S4	86.000	85.480	0.370	Open Manhole	1200
s3.000	8.273	201.8	S4	86.000	85.609	0.241	Open Manhole	1200
S1.004	13.855	200.8	S5	86.000	85.411	0.439	Open Manhole	1200
S1.005	14.670	201.0	S10	86.000	85.338	0.512	Open Manhole	1200
S1.006	7.269	201.9	56	86.000	85.302	0.548	Open Manhole	1200
S1.007	10.818	150.3	S7	86.000	85.230	0.620	Open Manhole	1200
S4.000	10.535	198.8	s7	86.000	85.247	0.528	Open Manhole	1200
S1.008	36.411	200.0	S8	86.000	85.048	0.727	Open Manhole	1200

Horganlynch Consulting Engineers		Page 9
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Dialilage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN		Diam (mm)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
s5.000	0	225	S12	86.000	85.200	0.575	Open Manhole	1200
s1.009	0	225	S8	86.000	85.048	0.727	Open Manhole	1200
s6.000	0	150	S14	86.000	85.000	0.850	Open Manhole	1200
S1.010	0	225	S9	86.000	84.873	0.902	Open Manhole	1200
s7.000	o	150	S16	86.000	85.000	0.850	Open Manhole	1200
S1.011	0	225	S10	86.000	84.557	1.218	Open Manhole	1200
S8.000	0	100	S18	86.000	85.650	0.250	Open Manhole	1200
S8.001	0	100	S18	86.000			Open Manhole	
s9.000	0	150	S20	86.000	85.650	0.200	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
s5.000	11.439	200.7	S8	86.000	85.143	0.632	Open Manhole	1200
S1.009	26.223	149.8	S9	86.000	84.873	0.902	Open Manhole	1200
S6.000	5.919	150.0	S9	86.000	84.961	0.889	Open Manhole	1200
S1.010	47.348	149.8	S10	86.000	84.557	1.218	Open Manhole	1200
S7.000	5.407	100.1	S10	86.000	84.946	0.904	Open Manhole	1200
S1.011	20.570	150.1	s11	86.000	84.420	1.355	Open Manhole	1200
S8.000	9.187	150.0	S18	86.000	85.589	0.311	Open Manhole	1200
S8.001	10.523	150.3	S19	86.000	85.534	0.366	Open Manhole	1200
\$9.000	5.151	200.0	S19	86.000	85.624	0.226	Open Manhole	1200

Horganlynch Consulting Engineers		Page 10
Tellengana	SCHOLARSTOWN APARTMENTS	
Blackrock Road	DUBLIN	
Cork		Micro
Date 29/09/2022	Designed by JG	
File CL12 - SUDs System Calcu	Checked by KC	Drainage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	•	Diam (mm)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S8.002	0	150	S19	86.000	85.534	0.316	Open Manhole	1200
\$8.003	0	150	523	86.000	85.462	0.388	Open Manhole	1200
S10.000	0	150	S22	86.000	85.650	0.200	Open Manhole	1200
S8.004	0	150	S20	86.000	85.408	0.442	Open Manhole	1200
S1.012	0	150	S11	86.000	84.420	1.430	Open Manhole	1200

Downstream Manhole

	PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	S8.002	10.750	149.3	S23	86.000	85.462	0.388	Open Manhole	1200
	S8.003	8.146	150.9	S20	86.000	85.408	0.442	Open Manhole	1200
S	10.000	3.006	100.0	S20	86.000	85.620	0.230	Open Manhole	1200
	s8.004	9.853	149.3	S11	86.000	85.342	0.508	Open Manhole	1200
	S1.012	3.326	151.2	S	86.000	84.398	1.452	Open Manhole	0

Horganlynch Consulting Engineers		Page 11
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	mainage
Innovyze	Network 2020.1.3	1 1 1 2 2 2 2 2 3 3 3 3 3

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	Classification	Green Roof	70	0.006	0.004	0.004
1.001		- 10 Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95	0.000	0.000	0.000
2.000	Classification	Green Roof	70	0.036	0.026	0.026
1.002	4 -		95	0.000	0.000	0.000
1.003	-		95	0.000	0.000	0.000
3.000	Classification	Green Roof	70	0.036	0.026	0.026
1.004	OPPOSE AND TO A POSE		95	0.000	0.000	0.000
1.005	Classification	Permeable Pavement	95	0.014	0.013	0.013
1.006	_		95	0.000	0.000	0.000
1.007			95	0.000	0.000	0.000
4.000	Classification	Green Roof	70	0.012	0.008	0.008
1.008	Classification	Permeable Pavement	95	0.040	0.038	0.038
5.000	Classification	Green Roof	70	0.009	0.006	0.006
1.009	Classification	Permeable Pavement	95	0.029	0.028	0.028
6.000	Classification	Green Roof	70	0.019	0.013	0.013
1.010	Classification	Permeable Pavement	95	0.070	0.066	0.066
7.000	Classification	Green Roof	70	0.033	0.023	0.023
1.011	Classification	Permeable Pavement	95	0.006	0.006	0.006
8.000	Classification	Green Roof	70	0.007	0.005	0.005
8.001	-	4	95	0.000	0.000	0.000
9.000	Classification	Green Roof	70	0.013	0.009	0.009
8.002	-		95	0.000	0.000	0.000
8.003	-		95	0.000	0.000	0.000
10.000	Classification	Green Roof	70	0.019	0.013	0.013
8.004			95	0.000	0.000	0.000
1.012		ini dang belia	95	0.000	0.000	0.000
				Total	Total	Total
				0.351	0.285	0.285

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	20.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coefficient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 5 Number of Storage Structures 9 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Return Period (years) 100

Horganlynch Consulting Engineers	Page 12	
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022 File CL12 - SUDs System Calcu	Designed by JG Checked by KC	Drainage
Innovyze	Network 2020.1.3	No. of the second

Synthetic Rainfall Details

 Region
 Scotland and Ireland
 Cv (Summer)
 0.750

 M5-60 (mm)
 17.000
 Cv (Winter)
 0.840

 Ratio R
 0.300 Storm Duration (mins)
 30

 Profile Type
 Summer

Horganlynch Consulting Engineers		Page 13	
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro Drainage	
Date 29/09/2022 File CL12 - SUDs System Calcu	Designed by JG Checked by KC		
Innovyze	Network 2020.1.3		

Online Controls for Storm

Orifice Manhole: S3, DS/PN: S1.003, Volume (m3): 0.7

Diameter (m) 0.035 Discharge Coefficient 0.600 Invert Level (m) 85.539

Orifice Manhole: S10, DS/PN: S1.006, Volume (m3): 1.0

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 85.338

Orifice Manhole: S19, DS/PN: S8.002, Volume (m3): 0.7

Diameter (m) 0.029 Discharge Coefficient 0.600 Invert Level (m) 85.534

Orifice Manhole: S20, DS/PN: S8.004, Volume (m3): 0.8

Diameter (m) 0.021 Discharge Coefficient 0.600 Invert Level (m) 85.408

Hydro-Brake® Optimum Manhole: S11, DS/PN: S1.012, Volume (m³): 2.7

Unit Reference MD-SHE-0064-2000-1200-2000 Design Head (m) 1.200 Design Flow (1/s) 2.0 Calculated Flush-Flo™ Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 84.420 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.200	2.0	Kick-Flo®	0.573	1.4
	Flush-Flor	0.282	1.8	Mean Flow over Head Range	- T	1.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) F	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	1.5	0.500	1.6	1.200	2.0	2.000	2.5
0.200	1.7	0.600	1.5	1.400	2.1	2.200	2.6
0.300	1.8	0.800	1.7	1.600	2.3	2.400	2.7
0.400	1.7	1.000	1.8	1.800	2.4	2.600	2.8
	1						

Horganlynch Consulting Engineers	Page 14	
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Dialilade
Innovyze	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: S11, DS/PN: S1.012, Volume (m3): 2.7

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s) De	epth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
3.000	3.0	5.000	3.9	7.000	4.5	9.000	5.1
3.500	3.3	5.500	4.0	7.500	4.7	9.500	5.2
4.000	3.5	6.000	4.2	8.000	4.8		
4.500	3.7	6.500	4.4	8.500	5.0	-	

Horganlynch Consulting Engineers		Page 15
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	niamade
Innovyze	Network 2020.1.3	

Storage Structures for Storm

Infiltration Basin Manhole: S3, DS/PN: S1.003

Invert Level (m) 85.660 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 6.5 0.340 36.0

Infiltration Basin Manhole: S10, DS/PN: S1.006

Invert Level (m) 85.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 80.0 0.500 156.0

Porous Car Park Manhole: S7, DS/PN: S1.008

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	3.0
Membrane Percolation (mm/hr)	1000	Length (m)	2.0
Max Percolation (1/s)	1.7	Slope (1:X)	1250.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	85.230	Cap Volume Depth (m)	0.300

Porous Car Park Manhole: S10, DS/PN: S1.011

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	8.0
Membrane Percolation (mm/hr)	1000	Length (m)	130.0
Max Percolation (1/s)	288.9	Slope (1:X)	1100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	85.300	Cap Volume Depth (m)	0.300

Swale Manhole: S18, DS/PN: S8.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 1.00

Horganlynch Consulting Engineers		Page 16
Tellengana	SCHOLARSTOWN APARTMENTS	
Blackrock Road	DUBLIN	
Cork		Micro
Date 29/09/2022	Designed by JG	Control of the Contro
File CL12 - SUDs System Calcu	Checked by KC	Drainage
Innovyze	Network 2020.1.3	

Swale Manhole: S18, DS/PN: S8.000

Invert Level	(m)	85.650		S	lope (1	:X)	150.0
Base Width	(m)	1.0		Cap Volume	Depth	(m)	0.300
Length	(m)	8.0	Cap	Infiltration	Depth	(m)	0.000
Side Slope (1:	:X)	3.0		Include Swa	ale Vol	ume	Yes

Swale Manhole: S18, DS/PN: S8.001

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coeffic	cient Base (m/h	0.00000	Length	(m) 8.0
Infiltration Coeffic	cient Side (m/h	0.00000	Side Slope (1:X) 3.0
	Safety Facto	or 2.0	Slope (1:X) 150.0
	Porosi	1.00	Cap Volume Depth	(m) 0.300
	Invert Level (n) 85.604	Cap Infiltration Depth	(m) 0.000
	Base Width (n) 1.0	Include Swale Vo	lume Yes

Swale Manhole: S19, DS/PN: S8.002

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration	Coefficient Ba	se (m/	(hr)	0.00000		Length (m)	8.0
Infiltration	Coefficient Si	de (m/	hr)	0.00000		Side Slope (1:X)	3.0
	Safe	ty Fac	ctor	2.0		Slope (1:X)	150.0
		Poros	sity	1.00		Cap Volume Depth (m)	0.300
	Invert	Level	(m)	85.534	Cap	Infiltration Depth (m)	0.000
	Base	Width	(m)	1.0		Include Swale Volume	Yes

Swale Manhole: S23, DS/PN: S8.003

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration	Coefficient Bas	e (m/hr)	0.00000		Length (m)	8.0
Infiltration	Coefficient Sid	e (m/hr)	0.00000		Side Slope (1:X)	3.0
	Safet	y Factor	2.0		Slope (1:X)	150.0
		Porosity	1.00		Cap Volume Depth (m)	0.300
	Invert L	evel (m)	85.462	Cap	Infiltration Depth (m)	0.000
	Base W	idth (m)	1.0		Include Swale Volume	Yes

Swale Manhole: S20, DS/PN: S8.004

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Horganlynch Consulting Engineers		Page 17
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022 File CL12 - SUDs System Calcu	Designed by JG Checked by KC	Drainage
Innovyze	Network 2020.1.3	

Swale Manhole: S20, DS/PN: S8.004

Infiltration	Coefficient B	ase ((m/hr)	0.00000		Length (m)	5.0
Infiltration	Coefficient S	ide ((m/hr)	0.00000		Side Slope (1:X)	3.0
	Saf	ety F	actor	2.0		Slope (1:X)	150.0
		Por	cosity	1.00		Cap Volume Depth (m)	0.300
	Invert	Leve	1 (m)	85.408	Cap	Infiltration Depth (m)	0.000
	Base	Widt	h (m)	1.0		Include Swale Volume	Yes

Horganlynch Consulting Engineers		Page 18
Tellengana	SCHOLARSTOWN APARTMENTS	
Blackrock Road	DUBLIN	
Cork		Micro
Date 29/09/2022	Designed by JG	Drainage
File CL12 - SUDs System Calcu	Checked by KC	Diamage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 5 Number of Storage Structures 9 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.300

Region Scotland and Ireland Cv (Summer) 0.750

M5-60 (mm) 17.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 75.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

ON

Inertia Status

WARNING: Half Drain Time has not been calculated as the structure is too full.

PN	US/MH Name	s	torm		Climate Change	First Surch	1000000	First () Flood	(Z) First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000	S1	120	Winter	100	+20%	100/15	Summer				85.973
S1.001	S1	120	Winter	100	+20%	100/15	Summer				85.973
S2.000	S4	120	Winter	100	+20%	100/15	Summer				85.977
S1.002	52	120	Winter	100	+20%	100/15	Summer				85.972
S1.003	53	120	Winter	100	+20%	100/15	Summer				85.967
S3.000	56	600	Winter	100	+20%	100/15	Summer				85.818
S1.004	S4	600	Winter	100	+20%	100/15	Summer				85.818
S1.005	S5	600	Winter	100	+20%	100/15	Summer				85.816
S1.006	S10	600	Winter	100	+20%	100/15	Summer				85.814
S1.007	S6	30	Winter	100	+20%	100/15	Summer				85.976
S4.000	S10	30	Summer	100	+20%	100/15	Summer				85.990
S1.008	S7	30	Summer	100	+20%	100/15	Summer				85.987
					©1982	-2020	Innovy	ze			

Horganlynch Consulting Engineers		Page 20
Tellengana Blackrock Road Cork	SCHOLARSTOWN APARTMENTS DUBLIN	Micro
Date 29/09/2022 File CL12 - SUDs System Calcu	Designed by JG Checked by KC	Drainage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Water Level
PN	Name	s	torm		Change			Flood	Overflow	Act.	(m)
\$5.000	S12	30	Summer	100	+20%	100/15	Summer				85.953
S1.009	58	30	Summer	100	+20%	100/15	Summer				85.950
\$6.000	S14	30	Summer	100	+20%	100/15	Summer				85.886
S1.010	39	30	Summer	100	+20%	100/15	Summer				85.875
S7.000	S16	600	Winter	100	+20%	100/15	Summer				85.657
S1.011	S10	600	Winter	100	+20%	100/15	Summer				85.656
\$8.000	S18	480	Winter	100	+20%	100/120	Winter				85.769
S8.001	S18	480	Winter	100	+20%	100/30	Summer				85.769
\$9.000	S20	480	Winter	100	+20%						85.769
\$8.002	S19	480	Winter	100	+20%	100/15	Summer				85.768
\$8.003	S23	480	Winter	100	+20%	100/30	Summer				85.747
S10.000	S22	600	Winter	100	+20%						85.748
\$8.004	S20	480	Winter	100	+20%	100/15	Summer				85.748
S1.012	S11	600	Winter	100	+20%	100/15	Summer				85.765

		Surcharged	Flooded			Half Drain	Pipe			
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level	
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded	
\$5.000	S12	0.528	0.000	0.09			2.9	FLOOD RISK		
S1.009	S8	0.677	0.000	0.62			24.4	FLOOD RISK		
\$6.000	S14	0.736	0.000	0.44			5.3	SURCHARGED		
S1.010	59	0.777	0.000	1.20			48.6	SURCHARGED		
\$7.000	S16	0.507	0.000	0.09			1.3	SURCHARGED		
S1.011	S10	0.874	0.000	0.11			4.2	SURCHARGED		
\$8.000	S18	0.019	0.000	0.06		273	0.3	SURCHARGED		
S8.001	S18	0.065	0.000	0.04		378	0.2	SURCHARGED		
\$9.000	S20	-0.031	0.000	0.06			0.6	OK		
S8.002	S19	0.084	0.000	0.03		497	0.3	SURCHARGED		
\$8.003	S23	0.135	0.000	0.02			0.2	SURCHARGED		
S10.000	S22	-0.052	0.000	0.07			0.7	OK		
\$8.004	S20	0.190	0.000	0.02			0.3	SURCHARGED		
S1.012	S11	1.195	0.000	0.19			2.0	SURCHARGED		

Horganlynch Consulting Engineers	Page 19		
Tellengana	SCHOLARSTOWN APARTMENTS		
Blackrock Road	DUBLIN		
Cork		Micro	
Date 29/09/2022	Designed by JG	Drainage	
File CL12 - SUDs System Calcu	Checked by KC	Diamage	
Innovyze	Network 2020.1.3		

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	S1	0.123	0.000	0.05			0.5	FLOOD RISK	
S1.001	S1	0.138	0.000	0.03			0.4	FLOOD RISK	
S2.000	S4	0.127	0.000	0.28			4.0	FLOOD RISK	
S1.002	S2	0.213	0.000	0.35			4.2	FLOOD RISK	
S1.003	S3	0.278	0.000	0.11		87	1.3	FLOOD RISK	
S3.000	56	0.018	0.000	0.13			1.4	SURCHARGED	
S1.004	S4	0.188	0.000	0.19			2.2	SURCHARGED	
S1.005	S5	0.255	0.000	0.25			2.9	SURCHARGED	
S1.006	S10	0.326	0.000	0.05			0.5	SURCHARGED	
S1.007	56	0.524	0.000	0.07			0.9	FLOOD RISK	
\$4.000	S10	0.465	0.000	0.12			3.6	FLOOD RISK	
S1.008	S7	0.532	0.000	0.40			14.0	FLOOD RISK	

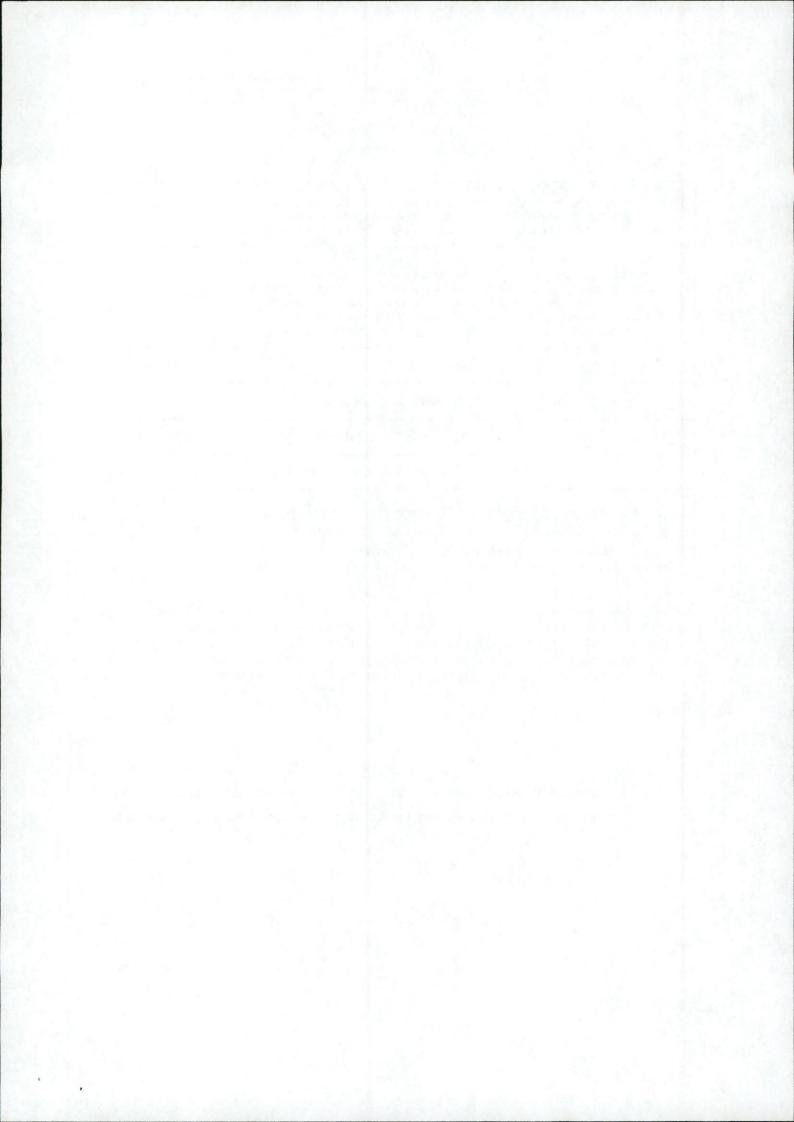
Magda Bednarczyk

1st Floor 30 O' Connell Street Co. Limerick Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

20 September 2021

Iri sh Water PO Box 448, South City Delivery Office, Cork City.

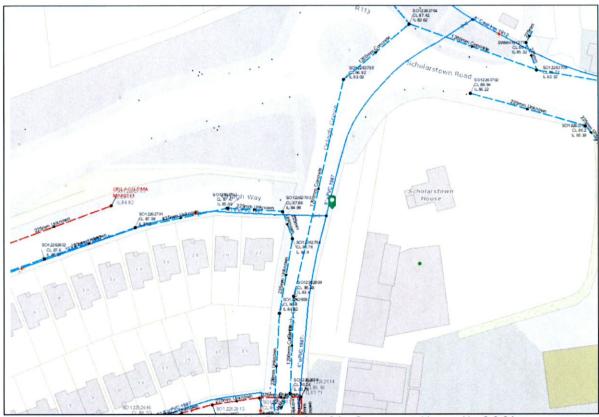
Re: CDS21005773 pre-connection enquiry - Subject to contract | Contract denied


www.water.ie

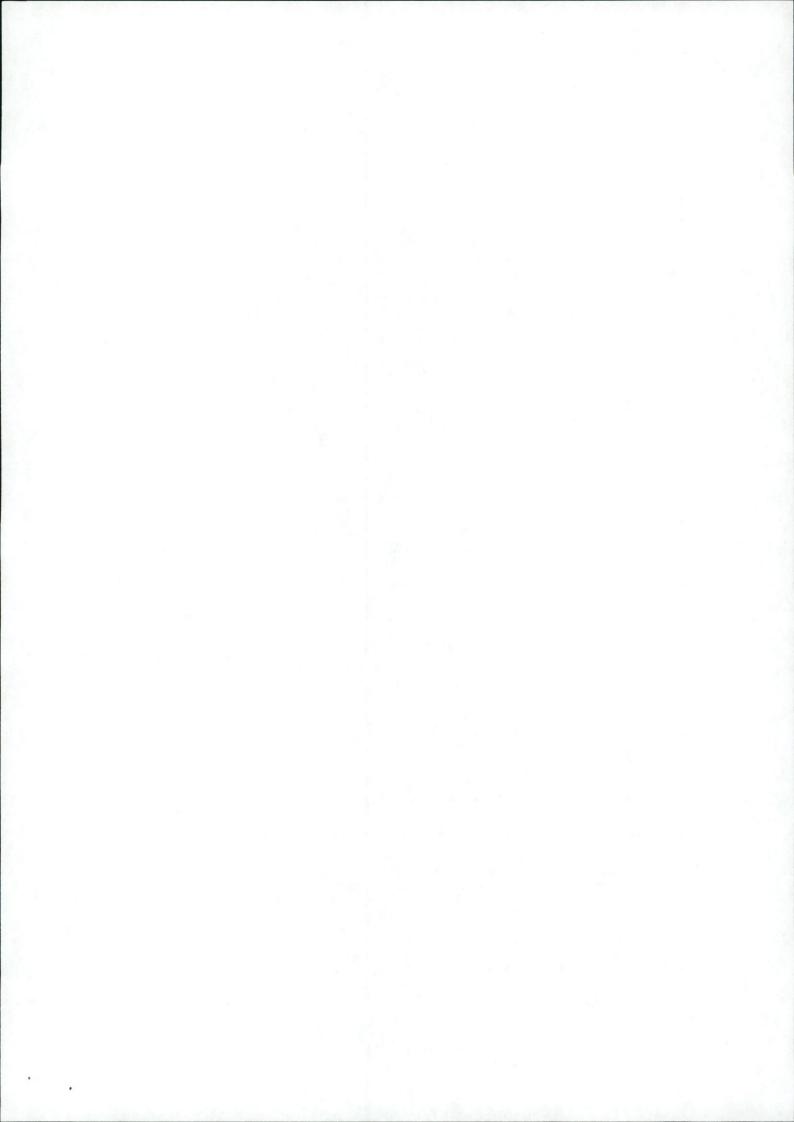
Connection for Multi/Mixed Use Development of 101 unit(s) at Scholarstown House, Scholarstown Road, Dublin 16, Co. Dublin

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Scholarstown House, Scholarstown Road, Dublin 16, Co. Dublin (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.


SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.							
Water Connection	Feasible without infrastructure upgrade by Irish Water							
Wastewater Connection	Feasible subject to upgrades							
	SITE SPECIFIC COMMENTS							
Water Connection	N/A							
Wastewater Connection	In order to accommodate the proposed connection to Irish Water wastewater network at the Premises, upgrade works are required to extend the length of the network by approximately 70m. Irish Water currently does not have any plans to extend its network in this area. Should you wish to progress with the connection you will be required to fund this network extension.							
Strategic Housing Development	Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore: in advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and							

received a Statement of Design Acceptance in relation to the layout of water and wastewater services.


The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Dario Alvarez from the design team on + 353 2254621 or email dalvarez@water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

Gronne Haceis

Yvonne Harris

Head of Customer Operations

