APPENDIX A: SITE CHARACTERISATION FORM

	Group Well/Borehole
Number of Bedrooms: 4 Maximum Number of Res Comments on population equivalent Number of bedrooms plus 2 Proposed Water Supply: Mains Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of Subsoil, (Specify Type): Made Ground Till derived from Metamorphic rocks	orgefield, Stocking Lane, Rathfarnham sidents: 6 Group Well/Borehole
Comments on population equivalent Number of bedrooms plus 2 Proposed Water Supply: Mains Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of the control of the co	Group Well/Borehole
Comments on population equivalent Number of bedrooms plus 2 Proposed Water Supply: Mains Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of the control of the co	Group Well/Borehole
Proposed Water Supply: Mains Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of the planning	
Proposed Water Supply: Mains Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of the plannin	
Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of the planning	
Private Well/Borehole 2.0 GENERAL DETAILS (From planning application of the planning	
2.0 GENERAL DETAILS (From planning applications) Soil Type, (Specify Type): Made Ground Till derived from Metamorphic rocks	
Soil Type, (Specify Type): Made Ground Till derived from Metamorphic rocks	ation)
Subsoil, (Specify Type): Till derived from Metamorphic rocks	
Subsoil, (Specify Type):	
Subsoil, (Specify Type):	
Bedrock Type: Ordovician Metasediments	
Crackiolari inclaccamione	
Aquifer Category: Regionally Important	Locally Important LI Poor
/ulnerability: Extreme ✓ High Moderate	Low
Groundwater Body: Kilcullen Statu	us Good
Name of Public/Group Scheme Water Supply within 1 km:	
Source Protection Area: ZOC SI SO Ground	ndwater Protection Response: R2,
Presence of Significant Sites	
Archaeological, Natural & Historical): None	
Past experience in the area: Good soakage	
Comments: Integrate the information above in order to comment on: the potential suitability of the s	site, potential targets at risk, and/or any potential site restrictions).
Bedrock Aquifer is LI - Vulnerability is Extreme - Groundwater will be a	a target at risk.

3.0 ON-SITE ASSESSMENT

	On Gentle North-facing slo	ope	
Slope:	Steep (>1:5)	Shallow (1:5-1:20)	Relatively Flat (<1:20) ✓
Slope Comment			
Surface Features with	thin a minimum of 250m (I	Distance To Features Should Be Note	ed In Metres)
House to West -on opp House to Northeast at	posite side of Road @ 100m 150m		
Existing Land Use:			
Existing Land Use:			
	Si:		
Residential			
Residential Vegetation Indicators	or soakage		
Residential Vegetation Indicators Nothing to suggest poo	or soakage		
Residential Vegetation Indicators Nothing to suggest poo	or soakage		
Residential Vegetation Indicators Nothing to suggest poor Groundwater Flow Diaground Condition:	or soakage		

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment (contd.)

Roads:	
Road R115 to northwest Lane to Southwest	
Outcrops (Bedrock And/Or Subsoil):	
None	
Surface Water Ponding:	
None	
Lakes:	
None	
Beaches/Shellfish Areas:	
None	
Wetlands:	
None	
Karst Features:	
None	
Watercourses/Streams:*	
None within 500m	

^{*}Note and record water level

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment (contd.)

No ditches bordering site		
prings:*		
None		
Vells:*		
rea on mains		

^{*}Note and record water level

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas which are at or adjacent to significant sites, (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial I	hole (m): 2.2					
Depth from gr to bedrock (m			oth from grou water table (m		1.9	
Depth of wate	r ingress:	Rock typ	e (if present):			
Date and time	of excavation: 2	7-Apr-2022	Date a	nd time of examina	tion: 29-Apr-2	2022
Depth of Surface and Subsurface Percolation Tests	Soil/Subsoil Texture & Classification**	Plasticity and dilatancy***	Soil Structure	Density/ Compactness	Colour***	Preferential flowpaths
0.1 m 0.2 m	Loam	Dilatant	Crumb	Firm	Dark Brown	Rootlets
0.3 m 0.4 m	Gravely CLAY with few small cobbles	Slowly dilatant trds = 11,10,10	Blocky	Firm	Dark Brown	
0.5 m	lew small couples	Ribs= 110,100,110				None
1.0 m	Gravely SILT/CLAY	dilatant	Blocky	Firm	dark	
1.2 m	with few cobbles and small boulders	Trds = 4,5,5 Ribs= 70,60,70			Grey/Brown	
1.3 m 1.4 m	Mottling at 1.1m bgl					
1.5 m						
1.6 m						
1.8 m						
1.9 m 2.0 m						
2.1 m						
2.2 m	Base of Pit					
2.3 m						
2.4 m 2.5 m				6.00	4 4 4 4	
2.6 m						
2.7 m						
2.8 m						
2.9 m 3.0 m	1 - 12 - 1					
3.1 m						
3.2 m						
3.3 m				34		
3.4 m						
3.5 m						
Likely Subsurf	face Percolation V	/alue: 20				
Likely Surface	Percolation Value	e: 20				

Note: 'Depth of percolation test holes should be indicated on log above. ('Enter Surface or Subsurface at depths as appropriate).

^{**} See Appendix E for BS 5930 classification.

^{*** 3} samples to be tested for each horizon and results should be entered above for each horizon.

^{****} All signs of mottling should be recorded.

3.2 Trial Hole (contd.) Evaluation:

Soil is free draining. There was water in the trial pit at 1.9m but there was evidence of mottling at 1.1m which means a standard septic tank and percolation area is insufficient.

3.3(a) Subsurface Percolation Test for Subsoil

Step 1: Test Hole Preparation

Step 2: Pre-Soaking Test Holes

Pre-soak start	Date Time	29-Apr-2022	29-Apr-2022	29-Apr-2022
2nd pre-soak start	Date Time	29-Apr-2022	29-Apr-2022	29-Apr-2022

Each hole should be pre-soaked twice before the test is carried out.

Step 3: Measuring T₁₀₀

If $T_{100} > 480$ minutes then Subsurface Percolation value >120 – site unsuitable for discharge to ground

If $T_{100} \le 210$ minutes then go to Step 4;

If $T_{100} > 210$ minutes then go to Step 5;

Sten 4: Standard Method (where T

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300	Finish Time (at 200	Δt (min)	Start Time (at 300	Finish Time (at 200	Δt (min)	Start Time (at 300	Finish Time (at 200	Δt (min)
1	mm) 09:17	mm)	71.00	mm) 09:22	mm)	73.00	mm) 09:22	mm)	67.00
1	00		,		10.00	10.00		10.20	07.00
2	10:28	11:58	90.00	10:35	12:11	96.00	10:29	11:57	88.00
3	11:58	13:43	105.00	12:11	14:11	120.00	11:57	13:41	104.00
Average ∆t Value			88.67			96.33			86.33
	Average ∆t	:/4 =		Average ∆t/	/4 =		Average ∆t	/4 =	
	[Hole No.1]		22.17 (t ₁)	[Hole No.2]		24.08 (t ₂)	[Hole No.3]		21.58 (t ₃)
Result of Te	est: Subsurfa	ice Percola	tion Value =		22	.61 (min/25	i mm)		
Comments	:								
Soakage is go	ood and well with	hin the require	d range						
	dified Metho			nutes)					
	dified Metho			nutes)	Percolation Test Hole No		2		

Value					38.67			96.33	3				86.33
	Avera	ıge ∆t/4 No.1]	l =	22.	17 (t₁)	Average ∆ [Hole No.2		24.08 (t,		rage ∆t/ e No.3]	′4 =	21.	.58 (t ₃)
Result of Te		osurfac	e Perco				22.6	1 (min/2	25 mm)				
Comments Soakage is go		vell withir	the requ	ired range	e								
Step 5: Mo	dified N	/lethod	(where	T ₁₀₀ > 2	10 mir	nutes)							
Percolation Test Hole No.		1					Percolation Test Hole No.		2				
Fall of water n hole (mm)	Time Factor = T,	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T, / T _m	T – Value = 4.45 / K _{fs}	Fall of water in hole (mm)	Time Factor = T,	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T - Value = 4.4 / K _{fs}
300 - 250	8.1	Ja. 1		0.00			300 - 250	8.1			0.00		
250 - 200	9.7			0.00			250 - 200	9.7			0.00		
200 - 150	11.9			0.00			200 - 150	11.9			0.00		
50 - 100	14.1			0.00			150 - 100	14.1			0.00		
Average	T- Value	е	T- Valu	e Hole 1	= (T ₁)	0.00	Average	T- Value			e Hole 2	_	0.00
Percolation							Result of Te	est: Sub					
Test Hole No.		3							(0.00	(min/25	mm)	
Fall of water n hole (mm)	Time Factor = T,	Start Time hh:mm	Finish Tim§e hh:mm	Time of fall (mins) = T _m	K _{fs} = T _f / T _m	T – Value = 4.45 / K _{fs}	Comments						
300 - 250	8.1			0.00									
50 - 200	9.7			0.00									
200 - 150	11.9			0.00									
150 - 100	14.1			0.00									
Average	T- Value	е	T- Valu	e Hole 3	= (T ₂)	0.00							

3.3(b) Surface Percolation Test for Soil

Step 1: Test Hole Preparation

Step 2: Pre-Soaking Test Holes

Pre-soak start	Date Time	29-Apr-2022	29-Apr-2022	29-Apr-2022
2nd pre-soak start	Date Time	29-Apr-2022	29-Apr-2022	29-Apr-2022

Each hole should be pre-soaked twice before the test is carried out.

If $T_{100} > 480$ minutes then Surface Percolation value >90 – site unsuitable for discharge to ground

If $T_{100} \le 210$ minutes then go to Step 4;

If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{_{100}}\!\le\!210$ minutes)

Percolation Test Hole			1				2				3		
Fill no.	Start Time (at 30 mm)	0	Finish Time (at 200 mm)	ΔΤ (ι	min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	ΔT (min)	Star Time (at 30 mm)	e 00	Finish Time (at 200 mm)	Δ	Γ (min)
1		09:11	10:13	3	62.00	09:13	10:16	63.00		09:09	10:0	02	53.00
2		10:13	11:24	4	71.00	10:16	11:21	65.00		10:02	11:0)7	65.00
3		11:24	12:49	9	85.00	11:21	12:48	87.00		11:07	12:1	16	69.00
Average ∆T Value					72.67			71.67					62.33
	Average [Hole	ge ∆T/4 No.1]	4 =	18.1	17 (T ₁)	Average ∆T [Hole No.2]		17.92 (T ₂		age ∆T/ : No.3]	/4 =	15	5.58 (T ₃
Comments:													
Soakage in top	psoil is go	ood											
Soakage in top Step 5: Mod			(where	Γ ₁₀₀ > 2	210 mir	nutes)	Percolation Test Hole No.		2				
Step 5: Mod Percolation Test Hole No.		lethod	Finish Time hh:mm	$T_{100} > 2$ Time of fall (mins) = T_m	K _{rs} = T, / T _m	T – Value = 4.45 / K _{fs}			Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T _r / T _m	
Step 5: Mod Percolation Test Hole No.	dified M	1 Start Time	Finish Time hh:mm	Time of fall (mins)	K _{fs} = T _r / T _m	T – Value = 4.45	Test Hole No. Fall of water	Factor	Start Time	Time	of fall (mins)	= T,	Value = 4.4
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7	1 Start Time	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00	K _{fs} = T _r / T _m	T – Value = 4.45	Fall of water in hole (mm) 300 - 250 250 - 200	Factor = T, 8.1 9.7	Start Time	Time	of fall (mins) = T _m 0.00 0.00	= T,	Value = 4.4
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7 11.9	1 Start Time	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00	K _{rs} = T _r / T _m	T – Value = 4.45	Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150	Factor = T, 8.1 9.7 11.9	Start Time	Time	of fall (mins) = T _m 0.00 0.00 0.00	= T,	Value = 4.4
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100	Time Factor = T, 8.1 9.7	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 0.00	K _{rs} = T _r / T _m	T – Value = 4.45	Fall of water in hole (mm) 300 - 250 250 - 200	Factor = T, 8.1 9.7	Start Time hh:mm	Time hh:mm	of fall (mins) = T _m 0.00 0.00	= T, / T _m	Value = 4.4 / K _{fs}
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100	Time Factor = T, 8.1 9.7 11.9 14.1	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 0.00	K _{rs} = T _r / T _m	T – Value = 4.45 / K _{1s}	Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100	8.1 9.7 11.9 14.1	Start Time hh:mm	Time hh:mm	of fall (mins) = T _m 0.00 0.00 0.00 0.00 0.00 0.00	= T, / T _m	Value = 4.4
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100	Time Factor = T, 8.1 9.7 11.9 14.1	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 0.00	K _{rs} = T _r / T _m	T – Value = 4.45 / K _{1s}	Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average	8.1 9.7 11.9 14.1	Start Time hh:mm	T- Valu	of fall (mins) = T _m 0.00 0.00 0.00 0.00 0.00 0.00	= T, / T _m	Value = 4.4 / K _{fs}
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7 11.9 14.1	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 0.00	K _{rs} = T _r / T _m	T – Value = 4.45 / K _{1s}	Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average	8.1 9.7 11.9 14.1 T- Value	Start Time hh:mm	T- Valu	of fall (mins) = T _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= T, / T _m	Value = 4.4 / K _{fs}
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7 11.9 14.1 T- Value Time Factor	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 Time of fall (mins)	K _{rs}	T - Value = 4.45 / K _{ts} 0.00 T - Value = 4.45	Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Result of	8.1 9.7 11.9 14.1 T- Value	Start Time hh:mm	T- Valu	of fall (mins) = T _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= T, / T _m	Value = 4.4 / K _{fs}
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7 11.9 14.1 T- Value Time Factor = T,	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 Hole 1 Time of fall (mins) = T _m	K _{rs}	T - Value = 4.45 / K _{ts} 0.00 T - Value = 4.45	Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Result of	8.1 9.7 11.9 14.1 T- Value	Start Time hh:mm	T- Valu	of fall (mins) = T _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= T, / T _m	Value = 4.4 / K _{fs}
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7 11.9 14.1 T- Value Time Factor = T,	1 Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m 0.00 0.00 0.00 Time of fall (mins) = T _m	K _{rs} = T _r / T _m	T - Value = 4.45 / K _{ts} 0.00 T - Value = 4.45	Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150 150 - 100 Average Result of	8.1 9.7 11.9 14.1 T- Value	Start Time hh:mm	T- Valu	of fall (mins) = T _m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= T, / T _m	Value = 4.4 / K _{fs}

4.0 CONCLUSION of SITE CHARACTERISATION

Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater. Slope of proposed infiltration / treatment area: Flat Are all minimum separation distances met? Depth of unsaturated soil and/or subsoil beneath invert of gravel (or drip tubing in the case of drip dispersal system) Percolation test result: Surface: Sub-surface: 17.00 23.00 Not Suitable for Development Suitable for Development Identify all suitable options Discharge Route¹ Septic tank system (septic tank and No Groundwater percolation area) (Chapter 7) 2. Secondary Treatment System Yes (Chapters 8 and 9) and soil polishing filter (Section 10.1) 3. Tertiary Treatment System and Infiltration / Yes treatment area (Section 10.2) **5.0 SELECTED DWWTS** Propose to install: Secondary Treatment System and soil polishing filter and discharge to: **Ground Water** Invert level of the trench/bed gravel or drip tubing (m) Site Specific Conditions (e.g. special works, site improvement works testing etc. A secondary treatment system is recommended followed by a soil polishing filter. As the top 1m is suitable for treatment the point of infiltration of the treated effluent should be at existing ground level. Vegetation is removed and then area leveled. The 300mm deep, bed of distribution gravel (20mm pebble) is placed on the prepared area. The distribution pipes are placed on this and covered with 100mm gravel. The PE is 6 - Hydraulic load is 900litres. T-value is between 20 and 40 so load filter allowing 15 m2/PE (option 2 EPA Code of Practice 2021) Area of filter is 90m2

¹ A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.4.

6.0 TREATMENT SYSTEM DETAILS SYSTEM TYPE: Septic Tank Systems (Chapter 7) Tank Capacity (m³) Mounded Percolation Area Percolation Area No. of Trenches No. of Trenches Length of Trenches (m) Length of Trenches (m) Invert Level (m) Invert Level (m) SYSTEM TYPE: Secondary Treatment System (Chapters 8 and 9) and polishing filter (Section 10.1) Secondary Treatment Systems receiving septic tank effluent **Packaged Secondary** (Chapter 8) **Treatment Systems** receiving raw wastewater (Chapter 9) Media Type Area (m2)* Depth of Filter Invert Level Type Sand/Soil Oakstown BAF Soil Capacity PE 6 Constructed Wetland Sizing of Primary Compartment Other 3.00 Polishing Filter*: (Section 10.1) Option 3 - Gravity Discharge Surface Area (m2)* Trench length (m) Option 1 - Direct Discharge Option 4 - Low Pressure Surface area (m²) Pipe Distribution Option 2 - Pumped Discharge Trench length (m) 90.00 Surface area (m2) Option 5 - Drip Dispersal Surface area (m²) SYSTEM TYPE: Tertiary Treatment System and infiltration / treatment area (Section 10.2) Identify purpose of tertiary Provide performance information Provide design information treatment demonstrating system will provide required treatment levels

DISCHARGE ROUTE:

Groundwater
✓ Hydraulic Loading Rate * (I/m².d)
10.00 Surface area (m²) 90.00

Surface Water ** Discharge Rate (m³/hr)

^{*} Hydraulic loading rate is determined by the percolation rate of subsoil

^{**} Water Pollution Act discharge licence required

QUALITY ASSURANCE: Installation & Commissioning Install as specified & supervised by appropriately qualified person On-going Maintenance Regular desludging & Maintenance contract with supplier or installer 7.0 SITE ASSESSOR DETAILS Company: Trinity Green Prefix: First Name: Eugene Surname: Bolton Address: Clonfert, Maynooth, Co. Kildare Qualifications/Experience: FETAC Site assessor, PhD Microbiology Date of Report: 10-May-2002 0862434828 Phone: E-mail info@trinitygreen.ie PI/C/12453/21/1 Indemnity Insurance Number: Eugene Bolton Digitally signed by Eugene Bolton Date: 2022.01.04 15:17:00 Z Signature:

6.0 TREATMENT SYSTEM DETAILS