Additional Information

Soakaway design, percolation tests/Site Map & CFRAM Map

Re.

Proposed retention planning application at: 123 Whitehall Road, Dublin 12 Plan Reg. Ref. SD22B/0335

21/296 TE

27th September 2022

Kevin & Robyn O' Shea 123 Whitehall Road,

Dublin 12

Belturbet Business Park, Creeny, Belturbet, Co. Cavan.

Tel: 049 9522236 Fax: 049 9522808

Web: www.traynorenvironmental.com

Re: Soakaway design as per BRE 365 for 90m² impermeable area for Kevin & Robyn O'Shea, Whitehall Road, Dublin 12

Dear Kevin & Robyn O'Shea,

We have designed per BRE Digest 365 based on the total impermeable area as supplied and Met Eireann's Extreme Rainfall Return Periods for 123 Whitehall Road, Dublin 12.

Site Information Supplied as part of the layout (extension only)

Total Impermeable area feeding Soakaway from retention structures on site = 90m²

Rainfall Information as Per Met Eireann (30 Year Rainfall Returns)

Storm dur.	Area	Rainfall	Rainfall Plus 20% Climate Change
mins.	m²	mm.	mm.
5	90	11.6	13.91
10	90	16.2	19.44
30	90	23.8	28.56
60	90	29.8	35.76

Void Ratio

The void ratio for the trench fill was set at 95% (0.95) to accommodate the use of Cellular Storage. The safety factor was taken as 1.

Soil infiltration rate

Tests carried out at 0.70m below ground level.

Calculated as per BRE365 = 3.0352* 10-6 m/sec

The total impermeable area is c. $90m^2$ and the runoff co-efficient is set at 1.0 as per BRE365.

Inflow From	
Total Impermeable Area: 90sq m @ runoff coefficient 1.0	= 3.218cu m
Total Inflow 90sq m	= 3.218cu m

Outflow from Soakaway in model storm	
Internal Surface area to 50% effective depth of Cellular Storage	2.40 sq m
Soil Infiltration Rate	0.0000030352m/s
Storm duration in seconds	= 3600s
Total Outflow (3.60 x 0.0000030352 x 3600)	0.039 cu. m

Storage Required in Cellular Storage (Inflow – Outflow)	= 3.218 m ³	
Capacity of Pit Required	= 3.346m ³	
Actual capacity of calculated soakaway:	=4.80m ³	

The Cellular Storage will have the following dimensions 4.00m long, 0.60m deep x 2.0m wide (4.80m³)

Traynor Environmental Ltd – BRE Digest 365 Calculations

Infiltration Ra	te	Soil Infiltration Rate, f = V _{p75-25} / a _{p50} x t _{p75-25}
Test Hole Dim	nension	
Length (1)	0.80m	Where
Width (m)	0.70m	V_{p75-25} = the effective storage volume of water in the trial pit
		between 75% and 25% effective depth;
Depth (m)	0.70m	a_{p50} = the internal surface area of the trial pit up to 50% effective
		depth and including the base area;
Drop Time	1025	t _{p75-25} = the time for the water level to fall from 75% to 25%
(mins)		effective depth
		$V_{p75-25} = 0.80 \times 0.70 \times (0.525 - 0.175) = 0.196 \text{m}^3$
		$na_{p50} = (0.80 \times 0.35 \times 2) + (0.70 \times 0.35 \times 2) = 1.05m^2$
		f = <u>0.196</u>
		$1.05 \times 1025 \times 60 = 3.0352^{-6} \text{m/s}$

Inflow and Outflow		Inflow to Soakaway Area I:
		I = A x R
		= impermeable surface area x M60-D min rainfall
		M60 – 60min Storm Duration, M60-D = 35.76mm = 0.03576m
Impermeable Area	90m²	Inflow = 90m ² x 0.03576 = 3.2184m ²
Rainfall (Depth)	35.76	$A_{50} = (4.00 \times 0.30 \times 2) + (2.00 \times 0.30 \times 2) = 3.60 \text{m}^2$
Cellular Storage	4.00	Outflow From Soakaway O:
(Length)		
Cellular Storage	2.00	
(Width)		
		$O = a_s 50 \times f \times D = Internal surface area of soakaway pit to$
		50% storage depth (excluding base area) x soil percolation
		rate x storm duration.
Cellular Storage	0.60	Outflow = 3.60 x 0.0000030352 x 3600 = 0.039m ³
(depth)		
Storm Duration (mm)	60	

Volume Required		Soakaway Storage Volume S
		= effective storage volume of soakaway with 95% free
		volume
Void (Ratio)	0.95	Storage = 3.218m ² – 0.039 = 3.179 m ³
		Volume = <u>3.179</u> = 3.346m ³

0.95

CELLULAR STORAGE
LOCATION

EXTENSION & SHED
FOR RETENTION

550

Figure 1: Site Layout 123 Whitehall Road, Dublin 12 showing Location of Tested Area

NB:

During the design process, a Silt Trap <u>must</u> be incorporated into any drains discharging into the soakaway system.

NB:

Any paved surface runoff or runoff from a car-parking area <u>must</u> pass through an oil interceptor/hydrocarbon retention geotextile before discharge to the soakaway if applicable.

NB:

All elements of the soakaway **must** be maintained by suitably qualified professionals *i.e.* Silt traps must be regularly cleaned.

NB:

Please note that all relevant aspects of BRE365 <u>must</u> be taken into account in the design and installation of this soakaway system e.g. minimum separation distance of 5m from building foundations and from soil polishing filter for domestic wastewater.

Should you have any queries on this, do not hesitate to contact me.

Yours sincerely

Nevin Traynor

BSc. Env, H.Dip I.T, Cert SHWW, EPA/FAS Cert.

BIS TRAINE

For Traynor Environmental Ltd

Encl - Appendices A - D

SOAKAWAY TESTING TO BRE DIGEST 365

SITE AT THE 123 WHITEHALL ROAD, DUBLIN 12

COMPLETED BY

TRAYNOR ENVIRONMENTAL LTD

APPENDIX A - SITE PHOTOGRAPHS

Photographs From the Soakaway Test No. 1

SOAKAWAY TESTING TO BRE DIGEST 365

SITE AT THE 123 WHITEHALL ROAD, DUBLIN 12

COMPLETED BY

TRAYNOR ENVIRONMENTAL LTD

APPENDIX B-TRIAL PIT LOG

Trial Pit Number TP 1

Traynor Environmental Ltd Unit 6, Belturbet Business Park Creeny

Sheet 1 of 1

		Belturi Co. Cav							
Project Proposed Development Site at 1	123 Whiteha		Client Kevin & Ro	obyn O'She					
Method 1.5-ton digger	Ground L	.evel		Start Da					
Description	Legend	Reduced Level	Depth	Water Strike (m)	Installation Backfill	Sample Test	Notes		
Silt/Clay, Crumb Nature, Medium Density Brown Colour			0.00m- 0.40m						
Clay intermixed with stone. Medium Density Brown Colour			0.40m- 1.00m						
Winter Water Table			1.00m- 1.20m						
Groundwater Table			1.20m 1.50m		3				
Trial Pit Completed at 1.50m B	GL.								
Remarks: Winter Groundwater: 1.00m BG Groundwater: 1.20m BGL Bedrock: None Encountered	Pit Dimensions Length: 2.20m Width: 1.80m Drientation of Lo	ong Side: 000) Degrees	Job Number 21/296TE Logged By NT					

SOAKAWAY TESTING TO BRE DIGEST 365 SITE AT THE 123 WHITEHALL ROAD, DUBLIN 12

COMPLETED BY

TRAYNOR ENVIRONMENTAL LTD

APPENDIX B - MET EIREANN RAINFALL RETURN PERIODS

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 312353, Northing: 230105,

			8													
	Inte	rval						Years								
DURATION	6months,	lyear,	2,	3,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.5,	3.6,	4.3,	5.2,	5.9,	6.4,	8.2,	10.2,	11.6,	13.5,	15.3,	16.7,	18.8,	20.5,	21.9,	N/A ,
10 mins	3.5,	5.1,	5.9,	7.3,	8.2,	9.0,	11.4,	14.2,	16.2,	18.9,	21.3,	23.2,	26.2,	28.6,	30.6,	N/A ,
15 mins	4.1,	6.0,	7.0,	8.6,	9.7,	10.6,	13.4,	16.8,	19.0,	22.2,	25.1,	27.4,	30.9,	33.6,	36.0,	N/A .
30 mins	5.4,	7.8,	9.1,	11.1,	12.4,	13.5,	17.0,	21.1,	23.8,	27.7,	31.1,	33.8,	38.0,	41.3,	44.0,	N/A ,
l hours	7.1,	10.1,	11.8,	14.3,	15.9,	17.3,	21.6,	26.5,	29.8,	34.4,	38.6,	41.8,	46.8,	50.7,	53.9,	N/A ,
2 hours	9.4,	13.2,	15.3,	18.3,	20.4,	22.1,	27.4,	33.4,	37.3,	42.9,	47.8,	51.7,	57.6,	62.2,	66.0,	N/A ,
3 hours	11.1,	15.4,	17.8,	21.3,	23.6,	25.5,	31.4,	38.1,	42.6,	48.8,	54.3,	58.5,	65.1,	70.1,	74.3,	N/A ,
4 hours	12.4,	17.2,	19.8,	23.6,	26.2,	28.2,	34.7,	41.9,	46.7,	53.4,	59.3,	63.9,	70.9,	76.4,	80.8,	N/A ,
6 hours	14.6,	20.1,	23.0,	27.4,	30.3,	32.5,	39.8,	48.0,	53.3,	60.7,	67.3,	72.3,	80.1,	86.1,	91.0,	N/A .
9 hours	17.2,	23.5,	26.8,	31.8,	35.0,	37.6,	45.8,	54.9,	60.8,	69.0,	76.3,	81.9,	90.5,	97.0,	102.5,	N/A ,
12 hours	19.3,	26.2,	29.9,	35.3,	38.8,	41.6,	50.5,	60.3,	66.7,	75.6,	83.4,	89.4,	98.6,	105.7,	111.5,	N/A ,
18 hours	22.7,	30.7,	34.8,	40.9,	44.9,	48.0,	58.0,	69.0,	76.1,	86.0,	94.6,	101.3,	111.4,	119.1,	125.5,	N/A ,
24 hours	25.5,	34.2,	38.8,	45.4,	49.8,	53.2,	64.0,	75.9,	83.6,	94.2,	103.5,	110.6,	121.4,	129.7,	136.5,	159.9,
2 days	31.7,	41.6,	46.7,	54.1,	58.9,	62.6,	74.3,	87.0,	95.2,	106.4,	116.1,	123.4,	134.6,	143.1,	150.1,	173.8,
3 days	36.6,	47.5,	53.1,	61.0,	66.2,	70.2,	82.7,	96.2,	104.8,	116.5,	126.6,	134.3,	145.8,	154.6,	161.8,	186.1,
4 days	41.0,	52.7,	58.6,	67.1,	72.6,	76.8,	90.0,	104.2,	113.1,	125.3,	135.8,	143.8,	155.7,	164.7,	172.1,	197.1,
6 days	48.6,	61.8,	68.3,	77.7,	83.8,	88.4,	102.7,	118.0,	127.6,	140.6,	151.8,	160.3,	172.9,	182.4,	190.2,	216.3,
8 days	55.4,	69.7,	76.8.	87.0,	93.5,	98.4,	113.8,	130.0,	140.2,	154.0,	165.8,	174.5,	187.9,	197.8,	205.9,	233.1,
10 days	61.5,	76.9,	84.6,	95.4,	102.3,	107.5,	123.8,	140.9,	151.6,	166.0,	178.4,	197.6,	201.4,	211.7,	220.1,	248.3,
12 days	67.3,	83.7,	91.8,	103.2,	110.5,	116.0,	133.0,	150.9,	162.1,	177.2,	190.0,	199.5,	213.8,	224.5,	233.2,	262.3,
16 days	78.0,	96.1,	105.0,	117.5,	125.5,	131.5,	150.0,	169.3,	181.3,	197.4,	211.1,	221.3,	236.4,	247.8,	257.0,	287.7,
20 days	87.9,	107.6,	117.2,	130.6,	139.2,	145.6,	165.4,	186.0,	198.7,	215.8,	230.2,	241.0,	256.9,	268.9,	278.5,	310.6,
25 days NOTES:	99.5,	120.9,	131.3,	145.9,	155.1,	162.0,	183.2,	205.2,	218.8,	236.9,	252.2,	263.5,	280.4,	293.0,	303.1,	336.8,

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

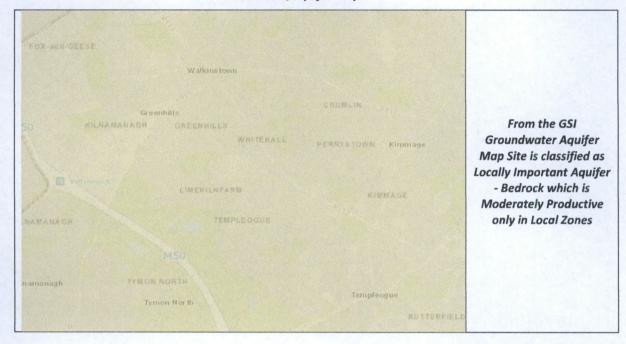
For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

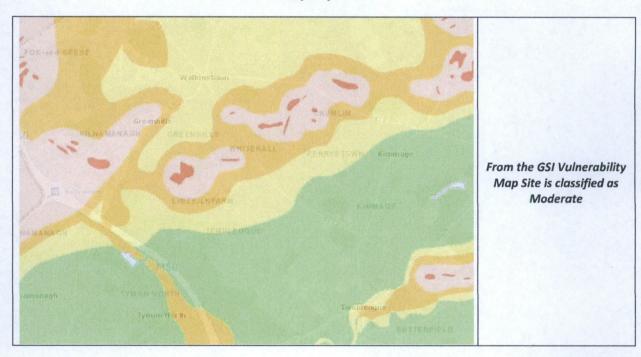
SOAKAWAY TESTING TO BRE DIGEST 365

SITE AT THE 123 WHITEHALL ROAD, DUBLIN 12

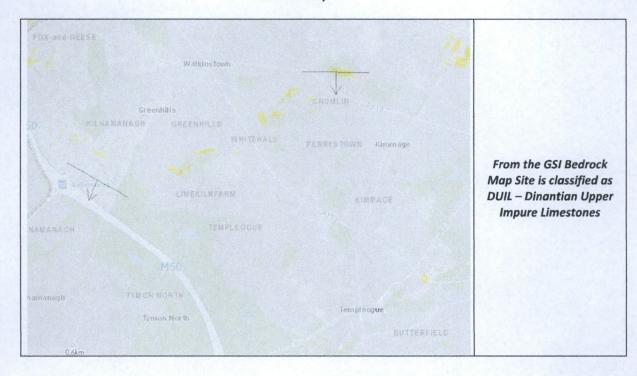
COMPLETED BY


TRAYNOR ENVIRONMENTAL LTD

APPENDIX C - MAPS USED AS PART OF THE DESK STUDY



Maps Used As Part of the EPA Site Suitability Assessment


Groundwater/Aquifer Map

Vulnerability Map

Bedrock Map

Teagasc Subsoil Map

SOAKAWAY TESTING TO BRE DIGEST 365 SITE AT THE 123 WHITEHALL ROAD, DUBLIN 12 COMPLETED BY TRAYNOR ENVIRONMENTAL LTD

APPENDIX D - INSURANCE

Griffiths & Armour Europe DAC

Alexandra House 2 +353 (0)1 884 1409
The Oweepstakes 2 +353 (0)1 834 9001
Ballsbridge 2 info@griffithsandarmour.com
Dublin 4 2 griffithsandarmour.com

PROFESSIONAL INDEMNITY INSURANCE

We confirm the following details relating to our client's Professional Indemnity Insurance:

Insured: Traynor Environmental Ltd

Belturbet Business Park Address:

> Creeny Belturbet Co. Cavan H14AY94

Axis Specialty Europe SE Lead Insurer(s):

Period of Insurance: 12 July 2020 to 11 July 2021

Policy Number: 19/1/03965

A sum not less than €1,500,000 any one claim and unlimited in the period of Limit of Indemnity:

insurance

Signed:

Graeme Tinney Chief Executive Officer Griffiths & Armour Europe DAC

Date: 09 July 2020

The policy is subject to the insuring agreements, exceptions, exclusions, limitations, conditions and declarations contained therein. The above is accurate at the date of signature. No obligation is imposed herein on the signatory to advise of any

Directors: G Timey C Evans (UK) D J Whalley (UK) T Cosgrove (Non-Executive)

Registered in Ireland No. 632256

Registered Office: Q House, 108 Fuzze Road, Candyford, Oublin 18, Ireland

Griffiths & Armour Europe Designaled Activity Company is regulated by the Central Bank of Ireland

Overview AquaCell Systems

The AquaCell range of geocellular systems are a fully tried and tested, BBA approved, modular technique for managing excessive rainfall.

Applications


The AquaCell range can be used as either a temporary storage tank or as a soakaway, and is suitable for applications including:

- Landscaped areas
- Parks
- Domestic gardens
- Residential developments
- Oar parks & roads
- Industrial/commercial areas

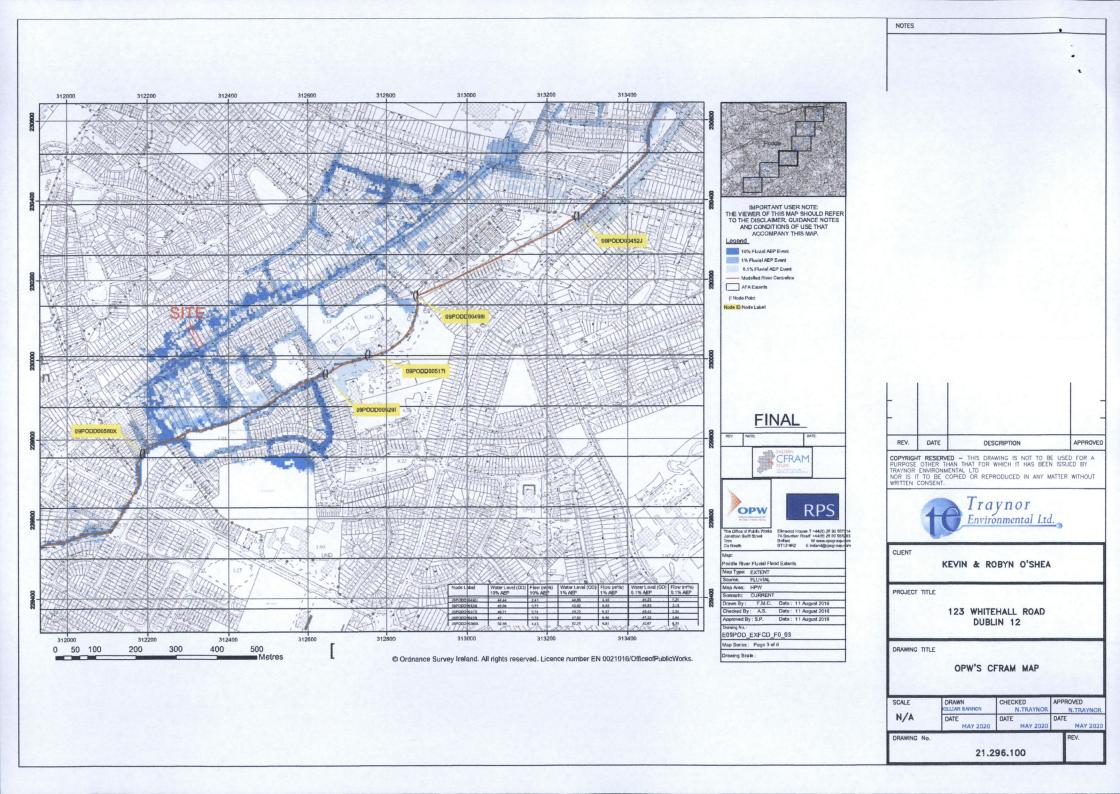
The AquaCell Range

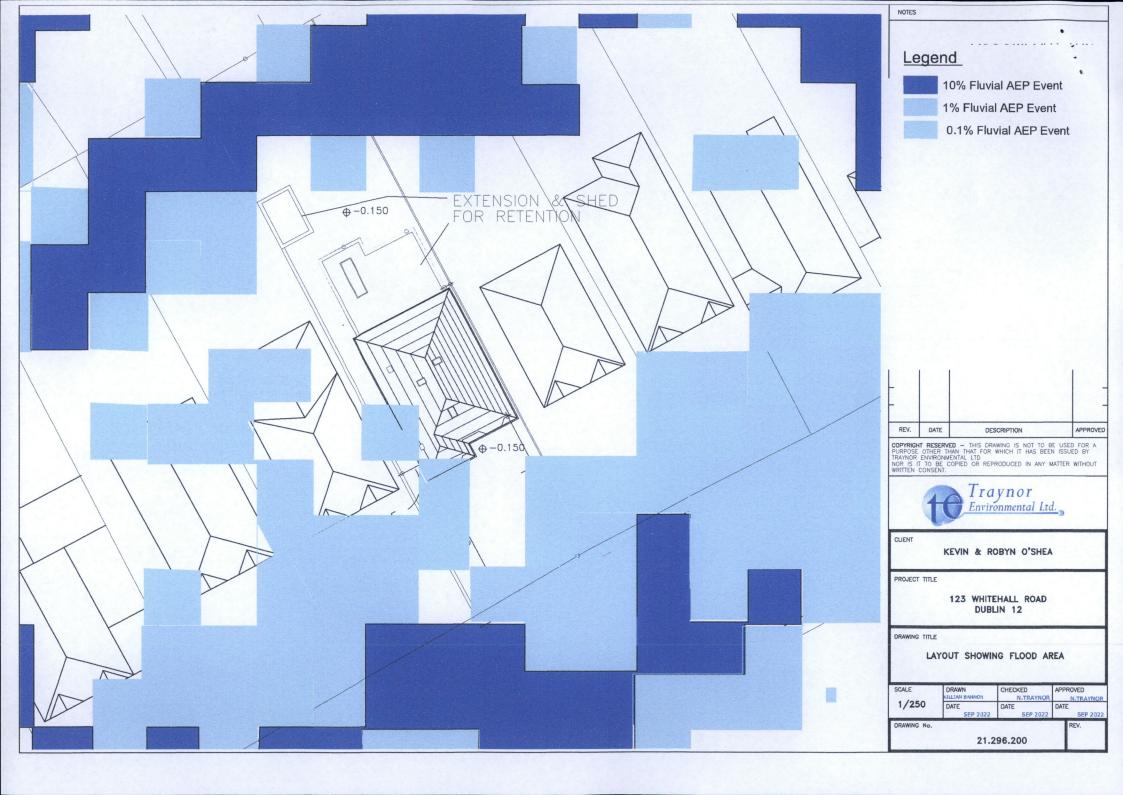
There are four types of AquaCell unit. Each can be used as a standalone system or different unit types can be mixed and matched together in layers to value engineer the most cost effective solution.

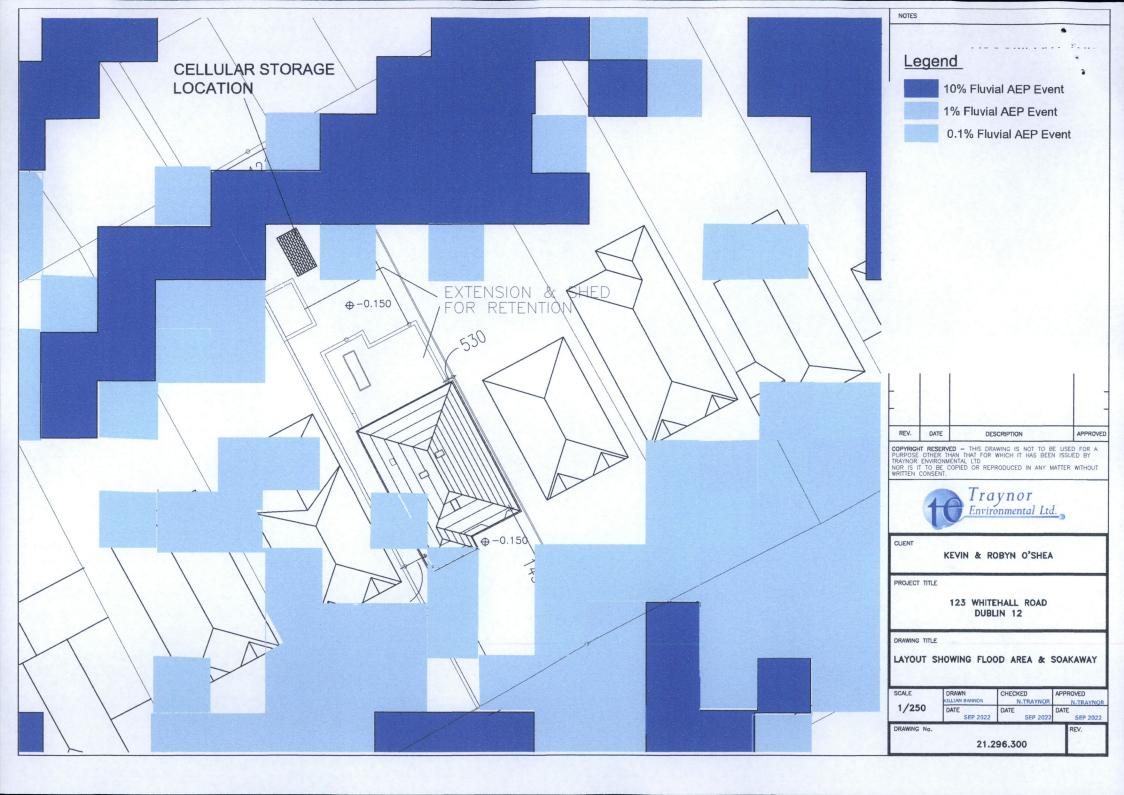
All AquaCell units have identical dimensions (1m x 0.5m x 0.4m), but they are manufactured to perform differently. The type of unit, or combination of units required will depend on factors such as the load application, overall installation depth and site conditions.

Features & benefits

The following are applicable to all AquaCell units:


- Fully BBA Approved Eco/Prime/Core/Plus are all approved under certificate No. 03/4018
- Modular, lightweight and versatile
- Easy to handle and quick to install
- Proven clip and peg connection system
- 95% void (each unit holds 190 litres of water)
- Can be brick-bonded for extra stability
- Units can be mixed and matched together for optimum performance
- Safer than open or above ground storage structures
- Full range of ancillaries
- O Can be used as part of a SuDS scheme to help reduce flood risk


Environmental Benefits


In addition, the AquaCell range can also offer the following environmental benefits:

- Significantly reduced flooding risk
- Controlled, reduced-volume release of stormwater into existing sewer systems or watercourses
- Recharging of local groundwater (if infiltration/soakaway application)
- Aerobic purification to improve water run-off quality
- Sustainable, cost effective management of the water environment

