SITE CHARACTERISATION REPORT Ref: Henry O'Kelly Beechlawn Killakee Rathfarnham **Dublin 16** **DATE: 27 April 2022** # **Site Assessment Summary:** • Groundwater: Not Encountered at 2.1m • Bedrock: Not Encountered at 2.1m • Subsurface Value: 8 • Surface Value: N/A • Well: >40m Upgradient Based on the findings of the site assessment the following is recommended: #### Recommended: - 1. Install a 6PE Tricel (En & SR66 certified) sewage treatment plant - 2. Install 4 X 10m long subsurface percolation trenches - 3. Install a distribution box - 4. Install vent pipes at the end of the trenches Report & Recommendations prepared by: Waste Water Maintenance Ltd. # Site Pictures Family Home, Site Views, Test location view & family business - Timber Trove / Sawmills # SITE CHARACTERISATION FORM # COMPLETING THE FORM Note: This form requires the latest version of Adobe Acrobat Reader and on PC's Windows 7 or later. Windows XP produces errors in calculations #### Step 1: Clear Form Goto Menu Item File, Save As and save the file under a reference relating to the client or the planning application reference if available. Use the Clear Form button to clear all information fields. #### Notes: All calculations in this form are automatic. Where possible information is presented in the form of drop down selection lists to eliminate potential errors. Variable elements are recorded by tick boxes. In all cases only one tick box should be activated. All time record fields must be entered in twenty four hour format as follows: HH:MM All date formats are DD-MM-YYYY. All other data fields are in text entry format. This form can be printed out fully populated for submission with related documents and for your files. It can also be submitted by email. - **Section 3.2** In this section use an underline ____ across all six columns to indicate the depth at which changes in classification / characteristics occur. - **Section 3.4** Lists supporting documentation required. - **Section 4** Select the treatment systems suitable for this site and the discharge route. - **Section 5** Indicate the system type that it is proposed to install. - Section 6 Provide details, as required, on the proposed treatment system. # **APPENDIX A: SITE CHARACTERISATION FORM** | File Reference: | |---| | 1.0 GENERAL DETAILS (From planning application) | | Prefix: Mr First Name: Henry Surname: O'Kelly | | Address: Site Location and Townland: | | Beechlawn, Killakee, Rathfarnham, Dublin 16 Same - proposed new on-site sewage system | | Number of Bedrooms: 3 Maximum Number of Residents: 5 | | Comments on population equivalent | | | | Proposed Water Supply: | | Mains Private Well/Borehole Existing well on-site Group Well/Borehole | | 2.0 GENERAL DETAILS (From planning application) | | Soil Type, (Specify Type): Brown Podzolics / Acid Brown Earths | | Granite & metamorphic till | | Subsoil, (Specify Type): | | Bedrock Type: Granites & other Igneous Intrusive Rocks / Ordovician Metasediments | | Aquifer Category: Regionally Important Locally Important LI Poor | | Vulnerability: Extreme ✓ High Moderate Low | | Groundwater Body: Kilcullen Status | | Name of Public/Group Scheme Water Supply within 1 km: Source Protection Area: ZOC SI SO Groundwater Protection Response: | | Presence of Significant Sites | | (Archaeological, Natural & Historical): Massy's Estate Woods to the West & South | | Past experience in the area: Areas of good soakage in often very sandy (granite) gravelly subsoils | | Comments: | | (Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions). | | Ground water / aquifer are targets | | | | | | | Note: Only information available at the desk study stage should be used in this section. # 3.0 ON-SITE ASSESSMENT | 3.1 Visual Assessme | nt | | | |---|--------------------------|--|-------------------------| | Landscape Position: | Hilly | | | | Slope: | Steep (>1:5) | Shallow (1:5-1:20) ✓ | Relatively Flat (<1:20) | | Slope Comment | | Gradual slope W to E | | | Surface Features within | n a minimum of 250m | n (Distance To Features Should Be Note | ed In Metres) | | Houses: | | | | | Timber Trove (O'Kellys S
House to the SW >100m
Family Home SE >80m (
Houses N>200m | | | | | Existing Land Use: | | | | | Existing family home & g | ardens with agricultural | fields to the East | | | Vegetation Indicators: | | | | | No soakage indicators no | oted | | | | Groundwater Flow Dire | ection: West to East | l | | | Ground Condition: | | | | | Firm underfoot on test da | lys - dry sunny weather | on both days | | | Site Boundaries: | | | | | Hedging on the E & N sid | des with wire fencing an | nd open fields. | | | | | | | #### 3.0 ON-SITE ASSESSMENT # 3.1 Visual Assessment (contd.) Roads: Killakee Road passes the driveway entrance to the house Outcrops (Bedrock And/Or Subsoil): None Surface Water Ponding: None on test days Lakes: None within 250m Beaches/Shellfish Areas: None within 250m Wetlands: None within 250m Karst Features: None Watercourses/Streams:* >100m to the south ^{*}Note and record water level # 3.0 ON-SITE ASSESSMENT | 3.1 Visual Assessment (contd.) | |---| | Drainage Ditches:* | | None | | Springs:* | | No springs noted | | Wells:* | | Well serving the family home upgradient >40m to the NW | | Comments: (Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the wastewat and the location of the proposed system within the site). The family home is served by a very old septic tank located in the rear SW corner of the garden and drains into a soak-pit. The system is over 40 years old and there are no recorded issues and no visible signs of any soakage issues. However it is proposed to install a modern waste water system directly behind the house >10m from the wall of the house. | | | ^{*}Note and record water level #### 3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers)) To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas which are at or adjacent to significant sites, (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service. | Depth of trial h | nole (m): 2.1 | | | | | | |----------------------------------|---|----------------------------------|---------------------------------|-----------------------|----------------|--------------| | Depth from gro
to bedrock (m) | | | oth from grou
vater table (m | | | | | Depth of water | r ingress: | Rock typ | e (if present): No | o rock or groundwater | encountered at | 2.1m | | Date and time | of excavation: 2 | 2-Apr-2022 | Date a | nd time of examina | tion: 27-Apr-2 | 09:30 | | Depth of
Surface and | | | | | | | | Subsurface | Soil/Subsoil | | | | | | | Percolation | Texture & | Plasticity and | Soil | Density/ | Colour**** | Preferential | | Tests | Classification** | dilatancy*** | Structure | Compactness | Ooloui | flowpaths | | 0.1 m
0.2 m | slightly sandy slightly gravelly SILT/CLAY | Threads 5/3/3
Ribbons 85/60mm | Crumb | Firm | Brown | Rootlets | | 0.3 m | 0-0.2m | Dilates | | | | | | 0.4 m | | | | | | | | 0.5 m | wan aandu aravallu | Threads 4/3/1 | Blocky | Firm / Soft | Brown | Random | | 0.6 m | very sandy gravelly
SILT with occasional | Ribbons 50/30mm | Бюску | Fillit/ Soit | Biowii | Harldoni | | 0.7 m | cobbles
0.2-1.3m | Dilates | | | | | | 0.8 m | 0.2-1.5111 | | | | 1 | | | 0.9 m | | | N. | | | H- | | 1.1 m | | | = | | | | | 1.2 m | | | l V | | | | | 1.3 m | | | | | | | | 1.4 m | | | 1 | | | | | 1.5 m | sandy gravelly | Threads 5/3/2 | Blocky | Firm / Soft | Brown | Random | | 1.6 m | SILT/CLAY with occasional cobbles & | Ribbons 70/60mm
Dilates | | | | | | 1.7 m | boulders | | | | | | | 1.8 m | 1.3-2.1m | | | | | | | 1.9 m | | | | | | | | 2.0 m | | | | | | | | 2.2 m | END OF PIT AT 2.1M | | | | | | | 2.3 m | END OF FIT AT 2.1W | | | | | | | 2.4 m | | | | | | | | 2.5 m | | | | | | | | 2.6 m | | | | | | | | 2.7 m | | | | | | | | 2.8 m | | | | | | | | 2.9 m | | | | | 1 | | | 3.0 m
3.1 m | | | | | 1 | | | 3.1 m | | | | | | | | 3.3 m | | | | | | | | 3.4 m | | | | | | | | 3.5 m | | | | | | | | | | | | #/. V- | | e n | | Likely Cubernt | food Doroclation V | /alus: | 7 | | | | | | face Percolation V | r | | | | | | Likely Surface | Percolation Value | e: | | | | | Note: *Depth of percolation test holes should be indicated on log above. ('Enter Surface or Subsurface at depths as appropriate). ^{**} See Appendix E for BS 5930 classification. ^{*** 3} samples to be tested for each horizon and results should be entered above for each horizon. ^{****} All signs of mottling should be recorded. #### 3.2 Trial Hole (contd.) Evaluation: No seepage or mottling noted in the pit walls. Groundwater is not a target #### 3.3(a) Subsurface Percolation Test for Subsoil #### Step 1: Test Hole Preparation #### Step 2: Pre-Soaking Test Holes | Pre-soak start | Date | 26-Apr-2022 | 26-Apr-2022 | 26-Apr-2022 | |----------------|------|-------------|-------------|-------------| | | Time | 09:34 | 09:37 | 09:40 | | 2nd pre-soak | Date | 26-Apr-2022 | 26-Apr-2022 | 26-Apr-2022 | | start | Time | 15:12 | 15:14 | 15:15 | Each hole should be pre-soaked twice before the test is carried out. Step 3: Measuring T₁₀₀ | Percolation Test Hole No. | 1 | 2 | 3 | |--|------------|------------|------------| | Date of test | 27-04-2022 | 27-04-2022 | 27-04-2022 | | Time filled to 400 mm | 09:33 | 09:34 | 09:34 | | Time water level at 300 mm | 10:02 | 10:02 | 09:51 | | Time (min.) to drop 100 mm (T ₁₀₀) | 29.00 | 28.00 | 17.00 | | Average T ₁₀₀ | | | 24.67 | If $T_{100} > 480$ minutes then Subsurface Percolation value >120 – site unsuitable for discharge to ground If $T_{100} \le 210$ minutes then go to Step 4; If T₁₀₀ > 210 minutes then go to Step 5; **Step 4:** Standard Method (where $T_{100} \le 210$ minutes) | Percolation
Test Hole | | 1 | | | 2 | | | 3 | | |--------------------------|---------------------------------|----------------------------------|------------------------|---------------------------------|----------------------------------|------------------------|---------------------------------|----------------------------------|------------------------| | Fill no. | Start
Time
(at 300
mm) | Finish
Time
(at 200
mm) | Δt (min) | Start
Time
(at 300
mm) | Finish
Time
(at 200
mm) | Δt (min) | Start
Time
(at 300
mm) | Finish
Time
(at 200
mm) | Δt (min) | | 1 | 10:02 | 10:34 | 32.00 | 10:02 | 10:32 | 30.00 | 09:51 | 10:11 | 20.00 | | 2 | 10:34 | 11:07 | 33.00 | 10:32 | 11:09 | 37.00 | 10:11 | 10:35 | 24.00 | | 3 | 11:04 | 11:40 | 36.00 | 11:09 | 11:53 | 44.00 | 10:35 | 11:02 | 27.00 | | Average ∆t
Value | | | 33.67 | | | 37.00 | | | 23.67 | | | Average ∆t | /4 = | | Average ∆t | /4 = | | Average Δt | :/4 = | | | | [Hole No.1] | | 8.42 (t ₁) | 100 | | 9.25 (t ₂) | [Hole No.3 | | 5.92 (t ₃) | | Result of Tes | st: Subsurfa | ice Percola | tion Value = | | 7 | 7.86 (min/25 | 5 mm) | | | | Comments: | | | | | | | | | | | | | | | 100 | 10 min | (4100) | | | | | | | | |---|------------------------|------------------------|-------------------------|---|--|---|------------------------------|------------------------|------------------------|-------------------------|---|---|---| | Percolation
Test Hole No. | | 1 | | | | | Percolation
Test Hole No. | | 2 | | | | | | Fall of water in hole (mm) | Time
Factor
= T, | Start
Time
hh:mm | Finish
Time
hh:mm | Time
of fall
(mins)
= T _m | K _{fs} = T _f / T _m | T –
Value
= 4.45
/ K _{ts} | Fall of water in hole (mm) | Time
Factor
= T, | Start
Time
hh:mm | Finish
Time
hh:mm | Time
of fall
(mins)
= T _m | K _{fs} = T _f / T _m | T –
Value
= 4.45
/ K _{fs} | | 300 - 250 | 8.1 | | | 0.00 | | | 300 - 250
250 - 200 | 8.1
9.7 | | | 0.00 | | | | 250 - 200
200 - 150 | 9.7 | | | 0.00 | | | 200 - 150 | 11.9 | | | 0.00 | | | | 150 - 100 | 14.1 | | | 0.00 | | | | 14.1 | | | 0.00 | | | | Average | T- Valu | е | T- Valu | e Hole 1 | = (T ₁) | 0.00 | 150 - 100
Average | T- Value | e | T- Value | e Hole 2 | = (T ₂) | 0.00 | | Average Percolation Test Hole No. | T- Valu | e
3 | T- Value | e Hole 1 | = (T ₁) | 0.00 | | T- Value | surface | Percol | | alue = | 0.00 | | Percolation | | | T- Value | Time of fall (mins) = T _m | = (T ₁) K _{fs} = T _t / T _m | T –
Value
= 4.45 | Average | T- Value | surface | Percol | ation Va | alue = | 0.00 | | Percolation
Test Hole No.
Fall of water
in hole (mm) | Time
Factor
= T, | Start
Time | Finish
Tim§e | Time of fall (mins) = T _m | K _{ts} = T, | T -
Value | Average Result of Te | T- Value | surface | Percol | ation Va | alue = | 0.00 | | Percolation
Test Hole No.
Fall of water
in hole (mm) | Time
Factor | Start
Time | Finish
Tim§e | Time
of fall
(mins) | K _{ts} = T, | T –
Value
= 4.45 | Average Result of Te | T- Value | surface | Percol | ation Va | alue = | 0.00 | | Percolation
Test Hole No.
Fall of water | Time
Factor
= T, | Start
Time | Finish
Tim§e | Time of fall (mins) = T _m | K _{ts} = T, | T –
Value
= 4.45 | Average Result of Te | T- Value | surface | Percol | ation Va | alue = | 0.00 | #### 3.3(b) Surface Percolation Test for Soil Step 1: Test Hole Preparation | Step 3: Measuring T ₁₀₀ | | | | |---|------|------|------| | | 1 | 2 | 3 | | Percolation Test Hole No. | 1 | | | | Date of test | | | | | Time filled to 400 mm | | | | | Time water level at 300 mm | | | | | Time to drop 100 mm (T ₁₀₀) | 0.00 | 0.00 | 0.00 | | Average T ₁₀₀ | | | 0.00 | If T $_{100}$ > 480 minutes then Surface Percolation value >90 – site unsuitable for discharge to ground If T $_{100}$ \leq 210 minutes then go to Step 4; If $T_{100} > 210$ minutes then go to Step 5; Step 4: Standard Method (where $T_{100} \le 210$ minutes) | Percolation
Test Hole | | | 1 | | | | 2 | | | | 3 | | | |--------------------------------------|--------------------------------|------------------------|---------------------------------|---|---|---|----------------------------------|----------------------|----------------------------|-------------------------|--------------------------------------|---|-----------------------------------| | Fill no. | Start
Time
(at 30
mm) | 0 (| Finish
Fime
at 200
mm) | ΔT (r | min) | Start
Time
(at 300
mm) | Finish
Time
(at 200
mm) | ΔT (min) | Sta
Tim
(at 3
mm) | ne
100 | Finish
Time
(at 200
mm) | ΔΤ | (min) | | 1 | 27 | | | | 0.00 | | | 0.00 | | | | | 0.00 | | 2 | | | | | 0.00 | | | 0.00 | | | | | 0.00 | | 3 | | | | | 0.00 | | | 0.00 | | | | | 0.00 | | Average ∆T
Value | | | | | 0.00 | | | 0.00 | | ' | | | 0.00 | | Result of Te | [Hole | | | | 0 (T ₁) | Average /
[Hole No. | 2] | 0.00 (T ₂ |) [Hole | age ∆T
e No.3] | | 0.0 | 00 (T ₃) | | Step 5: Mo Percolation Test Hole No. | umeu n | 1 | (where | 1100 / 2 | . 10 11111 | nutes) | Percolation
Test Hole No. | | 2 | | | | | | Fall of water
in hole (mm) | Time
Factor
= T, | Start
Time
hh:mm | Finish
Time
hh:mm | Time
of fall
(mins)
= T _m | K _{fs} = T _r / T _m | T –
Value
= 4.45
/ K _{fs} | Fall of wate in hole (mm | r Time | Start
Time
hh:mm | Finish
Time
hh:mm | Time of fall (mins) = T _m | K _{fs} = T _f / T _m | T - Value = 4.4 / K _{fs} | | 300 - 250 | 8.1 | | | 0.00 | | | 300 - 250 | 8.1 | | | 0.00 | | | | 250 - 200 | 9.7 | | | 0.00 | | | 250 - 200 | 9.7 | | | 0.00 | | | | 200 - 150 | 11.9 | | | 0.00 | | | 200 - 150 | 11.9 | | | 0.00 | | | | 150 - 100 | 14.1 | | | 0.00 | | | 150 - 100 | 14.1 | | | 0.00 | | | | Average | T- Value | Э | T- Value | e Hole 1 | = (T ₁) | 0.00 | Average | T- Valu | | | ue Hole 2 | | 0.00 | | Percolation | | | | | | | Result o | of Test: S | Cov. 42 Min Art A | | | | | | Test Hole No. | | 3 | | | | | | | 9 | 0.00 | (min/25 | mm) | | | Fall of water
n hole (mm) | Time
Factor
= T, | Start
Time
hh:mm | Finish
Time
hh:mm | Time
of fall
(mins)
= T _m | K _{fs} = T ₁ / T _m | T -
Value
= 4.45
/ K _{fs} | Comment | S: | | | | | | | 300 - 250 | 8.1 | | | 0.00 | | | | | | | | | | | 250 - 200 | 9.7 | | | 0.00 | | | | | | | | | | | 200 - 150 | 11.9 | | | 0.00 | | | | | | | | | | | 150 - 100 | 14.1 | | | 0.00 | | | | | | | | | | | Average | T- Value | е | T- Valu | e Hole 3 | = (T ₂) | 0.00 | | | | | | | | # 3.4 The following associated Maps, Drawings and Photographs should be appended to this site characterisation form. - Discovery Series 1:50,000 Map indicating overall drainage, groundwater flow direction and housing density in the area. - Supporting maps for vulnerability, aquifer classification, soil, subsoil, bedrock. - 3. North point should always be included. - Scaled sketch of site showing measurements to Trial Hole location and - (b) Percolation Test Hole locations, - (c) wells and - (d) direction of groundwater flow (if known), - (e) proposed house (incl. distances from boundaries) - (f) adjacent houses, - (g) watercourses, - (h) significant sites - (i) and other relevant features. - Site specific cross sectional drawing of the site and the proposed layout¹ should be submitted. - 6. Photographs of the trial hole, test holes and site including landmarks (date and time referenced). - 7. Pumped design must be designed by a suitably qualified person. ¹ The calculated percolation area or polishing filter area should be set out accurately on the site layout drawing in accordance with the code of practice's requirements. #### 4.0 CONCLUSION of SITE CHARACTERISATION Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater. Slope of proposed infiltration / treatment area: 1:200 Are all minimum separation distances met? Depth of unsaturated soil and/or subsoil beneath invert of gravel (or drip tubing in the case of drip dispersal system) Sub-surface: 8.00 Percolation test result: Surface: Suitable for Development Not Suitable for Development Discharge Route 1 Identify all suitable options Septic tank system (septic tank and Proposed to install a sewage treatment plant and No percolation area) (Chapter 7) subsurface trench soil polishing filter with a final discharge to ground water. Secondary Treatment System 2. Yes (Chapters 8 and 9) and soil polishing filter (Section 10.1) Tertiary Treatment System and Infiltration / Yes treatment area (Section 10.2) **5.0 SELECTED DWWTS** Propose to install: Secondary Treatment System and soil polishing filter and discharge to: Ground Water Invert level of the trench/bed gravel or drip tubing (m) 0.70 Site Specific Conditions (e.g. special works, site improvement works testing etc. Based on the site assessment the site is considered suitable for an on-site sewage system. It is proposed to install a new sewage treatment plant in conjunction with a constructed subsurface trench soil polishing filter to replace the existing very old single chamber septic tank and soak-pit. Subject to approval by the County Council. The system must be installed in accordance with the EPA CoP 2021. Only foul and grey water to discharge to the sewage system. Storm water must not be allowed into the sewage system. The existing septic tank serving the existing house must be desludged and decommissioned appropriately. The tank must be desludged and washed down before dosing with lime, breaking the floor of the tank and filling in the tank with soil. ¹ A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.4. # 6.0 TREATMENT SYSTEM DETAILS | Tank Capacity (m³) | | Percolation Area | | Mounded Percolation Area | |--|--------------|---|--|---| | | | No. of Trenches | | No. of Trenches | | | | Length of Trenches (m) | | _ength of Trenches (m) | | | | Invert Level (m) | | nvert Level (m) | | SYSTEM TYPE: Seco | ndary Treatr | ment System (Chapter | s 8 and 9) and po | olishing filter (Section 10.1) | | Secondary Treatmen
(Chapter 8) | t Systems re | eceiving septic tank ef | fluent | Packaged Secondary
Treatment Systems
receiving raw wastewater
(Chapter 9) | | Media Type | Area (m²)* | Depth of Filter | Invert Level | Туре | | Sand/Soil | | | | Tricel Treatment Plant | | Soil | | | | Capacity PE 6 | | Constructed Wetland | | | | Sizing of Primary Compartme | | Other | | | | m³ | | Polishing Filter*: (Se
Surface Area (m²)* | ection 10.1) | | 100,000 and 100 10 | avity Discharge 40.00 | | Option 1 - Direct Discl
Surface area (m²) | narge | | Trench length
Option 4 - Lo | | | Option 2 - Pumped Di | scharge | | Pipe Distribut
Trench length | | | Surface area (m²) | | | Option 5 - Dr
Surface area | ip Dispersal | | SYSTEM TYPE: Tertia | ary Treatmer | nt System and infiltrati | ion / treatment a | area (Section 10.2) | | Identify purpose of ter treatment | tiary | Provide performance demonstrating system required treatment | em will provide | Provide design information | | | | Tricel STP En & SR6
BOD 95.9
SS 95.3
NH4-N 74.9 | 6 Certified | Sewage Treatment Plant and a subsurface trench soil polishing filter with final discharge to ground water | | DISCHARGE ROUTE: | | | | | | Groundwater < | Hydraulic | Loading Rate * (I/m².d) | 750.00 | Surface area (m²) | | | | e Rate (m³/hr) | | | ^{*} Hydraulic loading rate is determined by the percolation rate of subsoil ^{**} Water Pollution Act discharge licence required # 6.0 TREATMENT SYSTEM DETAILS | QUALITY | 10 A | P-0.00 (0.00 | | | | | |---------------|---|--|---------------------------|---------------|---|---------------| | The installa | ation mus | missioning
t be supervised
tion of works. | by suitably qualified per | son with a C | Completion Report prepared to include pho | otographic | | | | | | | | | | On-going I | Mainten | ance | | | | | | | | e desludged ann
ualified person. | ual or in accordance with | h the manufa | acturers instructions and serviced at least | once every | 7.0 SI | TE AS | SESSOR D | ETAILS 💸 🛷 | ## * ## | | | | | | an is been use y | 5 P 2 P 2 | | | | | Company: | Waste V | Vater Maintenanc | e Limited | | | | | Prefix: | Mr | First Name: | Aidan | | Surname: Comerford | | | Address: | 149 Wo | oodfield, Scholar | stown Road, Rathfarnha | am, Dublin 10 | 6 | | | Qualification | ons/Exp | erience: EPA | SIte Assessor, Dip. Env | vironmental I | Impact & Strategic Impact Assessment | | | Date of Re | - | 27-Apr-2022 | | | | | | | port. L | | | | " [:/ 0 | | | Phone: | | | | E-ma | info@wastewater.ie | | | Indemnity | Insuran | ce Number: | | | ARB P | PI/D/1256/20/ | | | | | | | | | | Cianatura | P | Gud | | | | | | Signature: | | | | | | | # Vulnerability Extreme Scale: 1:50,000 **Geological Survey Ireland** Data layers that appear on this map may or may not be accurate, current, or otherwise reliable Map Centre Coordinates (ITM) 712,072 724,019 4/27/2022, 4:21:10 PM Ordnance Survey Ireland Licence No. EN 0047221 © Ordnance Survey Ireland/Government of Ireland © Geological Survey Ireland/Government of Ireland #### Legend Groundwater_Vulnerability_40K_IE... Rock at or near Surface or Karst Extreme High Moderate Low # Aquifer Locally Important Scale: 1:50,000 # **Geological Survey Ireland** This map is a user generated static output from an Internet mapping site and is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable Map Centre Coordinates (ITM) 712,072 724,019 4/27/2022, 4:26:27 PM Ordnance Survey Ireland Licence No. EN 0047221 © Ordnance Survey Ireland/Government of Ireland © Geological Survey Ireland/Government of Ireland #### Legend - Bedrock Aquifer Faults #### **Bedrock Aquifer** - LI Locally Important Aquifer Bedrock which is Moderately Productive only in Local - PI Poor Aquifer Bedrock which is Generally Unproductive except for Local # Bedrock GII / OM Scale: 1:50,000 # **Geological Survey Ireland** Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. Map Centre Coordinates (ITM) 712,072 724,019 4/27/2022, 4:34:27 PM Ordnance Survey Ireland Licence No. EN 0047221 © Ordnance Survey Ireland/Government of Ireland © Geological Survey Ireland/Government of Ireland # Legend #### **Groundwater Rock Units** - Dinantian Upper Impure Limestones - Granites & other Igneous Intrusive rocks - Ordovician Metasediments