

SITE CHARACTERISATION REPORT

Ref: Keith Justice

Glenaraneen

Brittas

Co. Dublin

DATE: 16 February 2021

Site Assessment Summary:

• Groundwater: Not encountered at 2.1m

• Bedrock: Not encountered at 2.1m

• T Value: 18

P Value: n/a

• Well: Wells >30m

The house is currently served by an old septic tank and soak – pit. Recently the soak-pit has started to flood discharging raw effluent over ground in the lower garden.

As the existing septic tank system has failed it is proposed to install a new on-site sewage system to serve the house.

Based on the site assessment with consideration to the proximity of the Well, the available area and the high loading of 11 people a tertiary on-site system is recommended to include, sewage treatment plant and sand filter overlying soil / stone polishing filters.

This will provide greater protection and separation distances from the Well as well as reducing the required footprint for the necessary percolation which will be beneficial due to the mature vegetation and roots.

Based on the site assessment I have made the following recommendations.

- Install new wastewater treatment system.
- Install a 30m square sand filter
- 80m sq soil filter under the sand filter

Report & Recommendations prepared by: Waste Water Maintenance Ltd.

SITE CHARACTERISATION FORM

COMPLETING THE FORM

Note:	This form requires the latest version of Adobe Acrobat Rea	der
	and on PC's Windows 7 or later. Windows XP produces en in calculations	rors

Step 1:

Goto Menu Item File, Save As and save the file under a reference relating to the client or the planning application reference if available.

Clear Form

Use the Clear Form button to clear all information fields.

Notes:

All calculations in this form are automatic.

Where possible information is presented in the form of drop down selection lists to eliminate potential errors.

Variable elements are recorded by tick boxes. In all cases only one tick box should be activated.

All time record fields must be entered in twenty four hour format as follows: HH:MM

All date formats are DD-MM-YYYY.

All other data fields are in text entry format.

This form can be printed out fully populated for submission with related documents and for your files. It can also be submitted by email.

- **Section 3.2** In this section use an underline ____ across all six columns to indicate the depth at which changes in classification / characteristics occur.
- **Section 3.4** Lists supporting documentation required.
- Section 4 Select the treatment systems suitable for this site and the discharge route.
- **Section 5** Indicate the system type that it is proposed to install.
- **Section 6** Provide details, as required, on the proposed treatment system.

APPENDIX A: SITE CHARACTERISATION FORM

File Reference:
10 GENERAL DEPARTS (From planting application)
Prefix: Mr First Name: Keith Surname: Justice
Address: Site Location and Townland:
Glenaraneen, Brittas, Co. Dublin Same - proposed new on-site sewage system to replace old septic tank and failed soak-pit
Number of Bedrooms: 7 Maximum Number of Residents: 9
Comments on population equivalent
4 Double bedrooms & 3 Single. Currently 11 people living in the house - Minimum 12pe sewage treatment plant recommended.
Proposed Water Supply:
Mains Private Well/Borehole Existing well on-site Group Well/Borehole
20 GENERAL DETAILS (From planting application)
Soil Type, (Specify Type): Brown Podzolics
Subsoil, (Specify Type):
Bedrock Type: Silurian Metasediments & volcanics
Aquifer Category: Regionally Important Locally Important Poor Pl
Vulnerability: Extreme ✓ High Moderate Low
Groundwater Body: Kilcullen Status
Name of Public/Group Scheme Water Supply within 1 km:
Source Protection Area: ZOC SI SO Groundwater Protection Response: R2¹
Presence of Significant Sites (Archaeological, Natural & Historical): None within 250m
Past experience in the area: Mixed area with good & bad soakage
Comments:
(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).
Ground water & shallow rock are targets The well is a target

Note: Only information available at the desk study stage should be used in this section.

90 on 2003	assesment		
3.1 Visual Assessm	ent		
Landscape Position:	Hilly		
Slope:	Steep (>1:5)	Shallow (1:5-1:20)	Relatively Flat (<1:20)
Slope Comment	Steep to flat in test area		
	nin a minimum of 250m (Dist	ance To Features Should Be Note	ed In Metres)
Houses: Existing house on site >		*	
			•
Existing Land Use:			
House & mature garden	S		
Vegetation Indicators:			
No soakage indicators n	oted		
Groundwater Flow Dire	ection: West / South to North	h	
Ground Condition:			
Soft underfoot			
Site Boundaries:			
Wire fencing, trees & but	shes		

ď

3.1 Visual Assessment (contd.)
Roads:
Local road passes the front entrance
Outcrops (Bedrock And/Or Subsoil):
None visible
Surface Water Ponding:
None on test days - but septic tank heavily ponding - falled soak-pit
Lakes:
Brittas ponds > 250m
Beaches/Shellfish Areas:
None within 250m
Wetlands:
None within 250m
Karst Features:
None .
Watercourses/Streams:*
None within 100m

OO ON SUBJECT CHEMPSEES END OOS

^{*}Note and record water level

	2	(0	ં	Ŋ-ć	IJ.	3 1	13	SS	Щ	4 2	Ď.	10
_			_									

3.1 Visual Assessment (contd.)

Drainage Ditches:*	
None around the site	\
Springs:*	
Well located N > 30m up gradient	
·	
Wells:*	
The well is a target but should be protected by distance and gradient Well located up steep gradient >30m	
Well located up steep gradient >30ff	
Comments: Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the waste and the location of the proposed system within the site).	water

The house is served by a very old septic tank (>40 years old) which drains into a soak-pit that has failed resulting in raw sewage & effluent ponding in the immediate area presenting a serious health & safety risk,

It is proposed to decommission the septic tank and soak-pit and install a new on-site sewage system designed based on the findings of the completed site assessment.

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

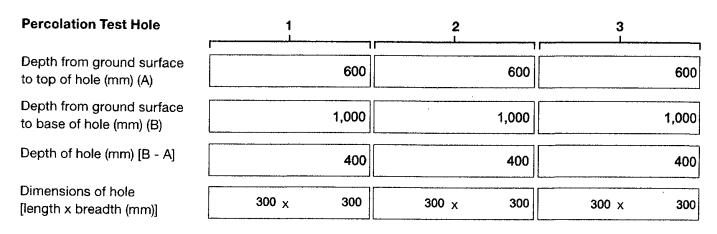
To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas which are at or adjacent to significant sites, (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial	hole (m): 2.1										
Depth from ground surface to bedrock (m) (if present): Depth from ground surface to water table (m) (if present):											
Depth of water ingress: Rock type (if present): No rock or water encountered at 2.1m											
Date and time of excavation: 10-Feb-2021 Date and time of examination: 16-Feb-2021											
Depth of Surface and Subsurface Soil/Subsoil											
Percolation Tests	Texture & Classification**	Plasticity and dilatancy***	Soil Structure	Density/ Compactness	Colour****	Preferential flowpaths					
0.1 m 0.2 m 0.3 m 0.4 m	slightly gravelly slightly sandy (gritty) SILT/CLAY 0-0.4m	Threads 6/3/3 Ribbons 85/70mm Dilates	Crumb	Firm / Soft	Dark Brown	Roots					
0.5 m	sandy SILT/CLAY) REAM) 0.4-0.5m	Threads 4/3/1 Ribbons 80/60mm Dilates	Blocky	Firm	Orange / Brown	Random					
1.0 m 1.1 m 1.2 m 1.3 m	sandy gravelly SILT/CLAY with cobbles & occasional boulders	Threads 7/4/3 Ribbons 90/60mm Dilates	Blocky	Firm / Soft	Light Brown	Random					
1.4 m	0.5-2.1m										
1.9 m 2.0 m 2.1 m 2.2 m	END OF PIT AT 2.1M										
2.3 m 2.4 m 2.5 m 2.6 m	END OF FIT AT 2.1W										
2.7 m											
3.1 m											
3.5 m											
Likely Subsurfa	ace Percolation Va	alue:									
Likely Surface Percolation Value:											

Note: *Depth of percolation test holes should be indicated on log above. ('Enter Surface or Subsurface at depths as appropriate).

^{**} See Appendix E for BS 5930 classification.

^{*** 3} samples to be tested for each horizon and results should be entered above for each horizon.


^{****} All signs of mottling should be recorded.

3.2 Trial Hole (contd.) Evaluation:

No seepage or mottling noted in the p	pit walls.		-

3.3(a) Subsurface Percolation Test for Subsoil

Step 1: Test Hole Preparation

Step 2: Pre-Soaking Test Holes

Pre-soak start	Date	15-Feb-2021	15-Feb-2021	15-Feb-2021
	Time	08:45	08:45	08:45
2nd pre-soak	Date	15-Feb-2021	15-Feb-2021	15-Feb-2021
start	Time	14:00	14:00	14:00

Each hole should be pre-soaked twice before the test is carried out.

Step 3: Measuring T₁₀₀

Percolation Test Hole No.	1	2	3
Date of test	16-02-2021	16-02-2021	16-02-2021
Time filled to 400 mm	09:14	09:15	09:17
Time water level at 300 mm	09:50	10:02	10:07
Time (min.) to drop 100 mm (T ₁₀₀)	36.00	47.00	50.00
Average T ₁₀₀			44.33

If $T_{100} > 480$ minutes then Subsurface Percolation value >120 – site unsuitable for discharge to ground

If $T_{100} \le 210$ minutes then go to Step 4;

If $T_{100} > 210$ minutes then go to Step 5;

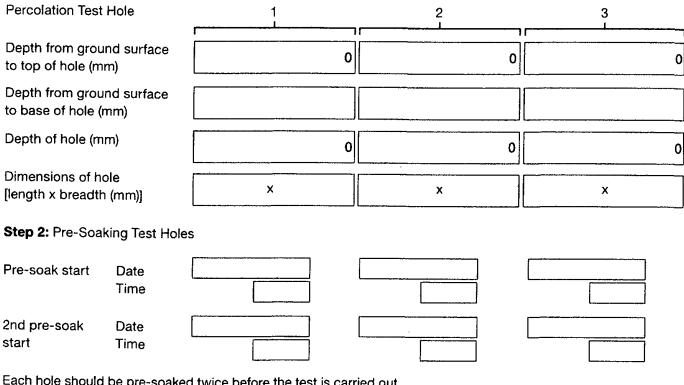
Step 4: Standard Method (where T₁₀₀ < 210 minutes)

Step 4: St	andard	vietno	a (where) 1 ₁₀₀ ≤	210 m	inutes)							
Percolatio Test Hole	n		1				2				3		
Fill no.	Star Time (at 30 mm)	•	Finish Time (at 200 mm)	Δt	(min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δt (min)	Sta Tir (at :	ne 300	Finish Time (at 200 mm)	Δt	(min)
1		09:50	10:4	7	57.00	10:02	11:05	63.00		10:07	11:0	7	60.00
2		10:47	11:5	8	71.00	11:05	12:15	70.00		11:07	12:2	2	75.00
3		11:58	13:1	1	73.00	12:15	13:32	77.00		12:22	13:5	0	88.00
Average Δt Value	t				67.00			70.00					74.33
Result of T	Average $\Delta t/4 = [Hole \ No.1]$ Average $\Delta t/4 = [Hole \ No.2]$ Average $\Delta t/4 = [Hole \ No.3]$ Average $\Delta t/4 = [Hole \ No.3]$ Result of Test: Subsurface Percolation Value = 17.61 (min/25 mm)												
Comments	s:												
The subsoil is	n the teste	d area is	s suitable t	or the tr	eatment	of effluent.							
Step 5: Mo	odified M	lethod	(where	T ₁₀₀ > 2	210 mir	nutes)							
Percolation Test Hole No.		1					Percolation Test Hole No		2				
Fall of water in hole (mm)	Factor	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T	K _{ts} = T _r / T _m	T – Value = 4.45	Fall of water in hole (mn		Start Time hh:mm	Finish Time hh:mm	Time of fall (mins)	K _{fs} = T, / T _m	T - Value = 4.45

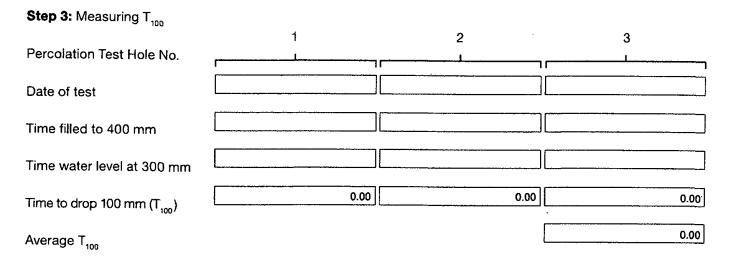
Test Hole No.		1				
Fall of water in hole (mm)	Time Factor = T ₁	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{1s} = T ₁ / T _m	T – Value = 4.45 / K _{ls}
300 - 250	8.1			0.00		
250 - 200	9.7			0.00		
200 - 150	11.9			0.00		
150 - 100	14.1			0.00		
Average	T- Value)	T- Value	e Hole 1	= (Ť.)	0.00

Test Hole No.		2				
Fall of water in hole (mm)	Time Factor = T,	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{fs} = T, / T _m	T – Value = 4.45 / K _{/s}
300 - 250	8.1			0.00		
250 - 200	9.7			0.00		
200 - 150	11.9			0.00		
150 - 100	14.1			0.00		
Average	T- Value	e	T- Value	e Hole 2	= (T ₂)	0.00

Percolation Test Hole No.		3				
Fall of water in hole (mm)	Time Factor = T _r	Start Time hh:mm	Finish Tim§e hh:mm	Time of fall (mins) = T _{in}	K ₁₈ = T ₁ / T _m	T – Value = 4.45 / K _{1s}
300 - 250	8.1			0.00		
250 - 200	9.7			0.00		
200 - 150	11.9			0.00		
150 - 100	14.1			0.00		
Average	T- Value	3	T- Value	e Hole 3	= (T ₂)	0.00


Result	of Test:	Subsurface Pe	rcolation Value =
		0.00	(min/25 mm)

Comments	s:			
			4	_


(min/25 mm)

3.3(b) Surface Percolation Test for Soil

Step 1: Test Hole Preparation

Each hole should be pre-soaked twice before the test is carried out.

If $T_{100} > 480$ minutes then Surface Percolation value >90 – site unsuitable for discharge to ground If $T_{100} \le 210$ minutes then go to Step 4;

If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{100} \le 210$ minutes)

Percolation Test Hole	on		1				2				3		
Fill no.	Sta Tin (at 3 mm	ne 300	Finish Time (at 200 mm)	ΔΤ	(min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	ΔT (min	Ti	art me 300 n)	Finish Time (at 200 mm)		ΔT (min)
1					0.00			0.0	00				0.00
2					0.00			0.0	0				0.00
3					0.00			0.0	0				0.00
Average Δ	r				0.00			0.0	0		<u> </u>		0.00
Result of T	[Hole	age ∆T/ e No.1] rface P			,	Average [Hole No	0.2]	0.00 (T (min/25 r	` ₂) [Hol	rage ∆ī le No.3]			0.00 (T ₃)
Comments	S:												
Step 5: Mo	odified (Method	(where	T ₁₀₀ > 2	210 min	utes)	Percolation Test Hole No.	1	2	1			
Fall of water in hole (mm)	Time Factor = T,	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K ₁₅ = T _f / T _m	T – Value = 4.45 / K _{fs}	Fall of wate in hole (mm		Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{rs} = T _r / T _m	T Value = 4.45 / K _{fs}
300 - 250	8.1			0.00			300 - 250	8.1			0.00		
250 - 200 200 - 150	9.7 11.9		<u> </u>	0.00			250 - 200	9.7		<u> </u>	0.00		
150 - 100	14.1			0.00			200 - 150 150 - 100	11.9 14.1			0.00		
Average	T- Valu	е	T- Value	e Hole 1	= (T,)	0.00	Average	T- Valu	e	T- Valu	ıe Hole 2	= (T ₂)	0.00
Donoslatia - 1							Result of	f Test: Sı	ırface F	Percola	tion Valu	ıe =	
Percolation Test Hole No.		3							0	.00 (min/25 i	mm)	
in hole (mm)	Time Factor = T _r	Start Time hh:mm	Finish Time hh:mm	Time of fall (mins) = T _m	K _{ts} = T _t / T _m	T - Value = 4.45 / K _{fs}	Comments	:		· · · · · · · · · · · · · · · · · · ·			
300 - 250	8.1			0.00									
250 - 200	9.7			0.00									
200 - 150	11.9			0.00									
150 - 100	14.1	<u> </u>	Lj	0.00									
Average	T- Value)	T- Value	Hole 3 =	= (T ₂)	0.00				· · · · · · · · · · · · · · · · · · ·			

3.4 The following associated Maps, Drawings and Photographs should be appended to this site characterisation form.

- 1. Discovery Series 1:50,000 Map indicating overall drainage, groundwater flow direction and housing density in the area.
- 2. Supporting maps for vulnerability, aquifer classification, soil, subsoil, bedrock.
- 3. North point should always be included.
- 4. (a) Scaled sketch of site showing measurements to Trial Hole location and
 - (b) Percolation Test Hole locations.
 - (c) wells and
 - (d) direction of groundwater flow (if known),
 - (e) proposed house (incl. distances from boundaries)
 - (f) adjacent houses,
 - (g) watercourses,
 - (h) significant sites
 - (i) and other relevant features.
- 5. Site specific cross sectional drawing of the site and the proposed layout should be submitted.
- 6. Photographs of the trial hole, test holes and site including landmarks (date and time referenced).
- 7. Pumped design must be designed by a suitably qualified person.

¹ The calculated percolation area or polishing filter area should be set out accurately on the site layout drawing in accordance with the code of practice's requirements.

3	म्क ब्रज्याबनम	aion diana envoy	entersament	יין אין אין אין אין אין אין אין אין אין	
per	colation tests) ab	ation from the desk study and bove and conclude the type o um final disposal route of the	f system(s) that	sment (i.e. visual assessment, trial is (are) appropriate. This informati vater.	hole and on is also used
Slo	pe of proposed i	nfiltration / treatment area:			
Are	all minimum sep	aration distances met?			
		d soil and/or subsoil beneath case of drip dispersal systen			
Per	colation test resu	ult: Surface:		Sub-surface:	
Not	Suitable for De	evelopment		Suitable for Development]
Ide	ntify all suitable	options		Discharge Route ¹	
1.	percolation are	-	No	Proposed to use a tertiary waste wa this site due to the limited available of the site and mature vegetation.	space, contours
2.	Secondary Trea (Chapters 8 an (Section 10.1)	atment System d 9) and soil polishing filter	Yes	Proposed sewage treatment plant w stone polishing filters with final discl water.	vith sand & narge to ground
3.	Tertiary Treatm treatment area	ent System and Infiltration / (Section 10.2)	Yes		
3	ा शबनब्धः न	DOWNS			
Prop	oose to install:	Tertiary Treatment System an	nd Infiltration /trea	tment area	
and	discharge to:	Ground Water			
Inve	rt level of the trer	nch/bed gravel or drip tubing	(m) (0.90	
Site	Specific Condition	ons (e.g. special works, site in	nprovement wo	rks testing etc.	
wast	te water system to i	ssment, number of occupants, the include a sewage treatment plant he County Council.	e site layout and a t, sand & stone po	available space it is proposed to install olishing filters with a final discharge to	a tertiary ground water
The	system must be ins	stalled in accordance with the EP	A CoP 2021.		
Only Stori	foul and grey wate m water must not b	er to discharge to the sewage sys e allowed into the sewage system	tem. n.		

¹ A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.4.

Tank Capacity (m³)		Percolation Area	1	Mounded Percolation Area
		No. of Trenches		No. of Trenches
		Length of Trenches (m)		_ength of Trenches (m)
		Invert Level (m)		nvert Level (m)
SYSTEM TYPE: Seco	ndary Treat	ment System (Chapter	s 8 and 9) and po	olishing filter (Section 10.1)
Secondary Treatmen (Chapter 8)	t Systems r	eceiving septic tank ef	fluent	Packaged Secondary Treatment Systems receiving raw wastewater (Chapter 9)
Media Type	Area (m²)*	Depth of Filter	Invert Level	Туре
Sand/Soil		30		Tricel Treatment Plant
Soil		80		Capacity PE 12
Constructed Wetland				Sizing of Primary Compartmen
Other				m³
Polishing Filter*: (Se Surface Area (m²)*	ction 10.1)			vity Discharge
Option 1 - Direct Disch Surface area (m²)	narge		Trench length Option 4 - Lov	` '
Option 2 - Pumped Dis	scharge	<u> </u>	Pipe Distributi	on
Surface area (m²)	-		Trench length Option 5 - Drig	
T-1			Surface area (· · · · · · · · · · · · · · · · · · ·
SYSTEM TYPE: Tertia	ry Treatmen	t System and infiltratio	on / treatment ar	ea (Section 10.2)
Identify purpose of tert treatment	iary	Provide performance demonstrating syste required treatment le	m will provide	Provide design information
Site specific - contours of mature vegetation and lin available space with a hig loading of 11 people usin system	nited gh	Tricel STP En & SR66 BOD 95.9 SS 95.3 NH4-N 74.9	Certified	Tertiary system with final discharge to ground water
DISCHARGE ROUTE:	<u> </u>	L		L
Groundwater 🗸	Hydraulic	Loading Rate * (I/m².d)	1,650.00	Surface area (m²)
Surface Water **	District.	Rate (m³/hr)		

6.0 TREATMENT SYSTEM DETAILS

^{*} Hydraulic loading rate is determined by the percolation rate of subsoil

^{**} Water Pollution Act discharge licence required

3073	GIVED WELSKE MELSKE MELKATEL
QUALITY A	ASSURANCE:
Installation	& Commissioning
The installa evidence or	tion must be supervised by suitably qualified person with a Completion Report prepared to include photographic n completion of works.
On-going N	Maintenance
The system	must be desludged annual or in accordance with the manufacturers instructions and serviced at least once every
year by a su	sitably qualified person.
70 917	EJANEE GOEGE BEANE
_	
Company: [Waste Water Maintenance Limited
Prefix: N	Mr First Name: Aidan Surname: Comerford
Address:	149 Woodfield, Scholarstown Road, Rathfamham, Dublin 16
	The tree states of the state of
Ĺ	
Qualification	ns/Experience: EPA Site Assessor, Dip. Environmental Impact & Strategic Impact Assessment
Date of Rep	port: 16-Feb-2021
Phone:	E-mail info@wastewater.ie
ndemnity Ir	
	nsurance Number: ARB PI/D/1256/20/1
	Λ -
Signature:	AGnd