SITE CHARACTERISATION FORM

File Reference:
1.0 GENERAL DETAILS (From planning application)
Prefix: Surname: Carrigan
Address: Site Location and Townland:
Hazelhatch Road, Newcastle Co. Dublin
Telephone No: 0872868034 Fax No:
E-Mail:
Maximum no. of Residents: 6 No. of Double Bedrooms: 4 No. of Single Bedrooms:
Proposed Water Supply: Mains 🔽 Private Well/Borehole 🗌 Group Well/Borehole
2.0 GENERAL DETAILS (From planning application)
Soil Type, (Specify Type): Limestone Till
Aquifer Category: Regionally Important Locally Important LI Poor
Vulnerability: Extreme ✔ High Moderate Low High to Low Unknown
Bedrock Type: Dinantian Upper Impure Limestone
Name of Public/Group Scheme Water Supply within 1 km: None
Groundwater Protection Scheme (Y/N): Yes Source Protection Area: SI SO
Groundwater Protection Response: R1
Presence of Significant Sites (Archaeological, Natural & Historical): None
Past experience in the area: Acceptable soakage
Comments:
(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).
The surface water and groundwater are likely to be targets at risk

Note: Only information available at the desk study stage should be used in this section.

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessm	nent		
Landscape Position:	Flat Landscape		
Slope:	Steep (>1:5) Shallov	v (1:5-1:20)	Relatively Flat (<1:20)
Surface Features with	hin a minimum of 250m (Distance To Fea	atures Should Be Not	red In Metres)
Houses: House Border	ers site to North and South		
Existing Land Use:	Residential		
Vegetation Indicators	large mature site - nothing to suggest poor soal	kage	
Groundwater Flow Di	irection: To North		
Ground Condition:	Firm - no surface water		
Site Boundaries: He	edge	ads: To West	
Outcrops (Bedrock A	and/Or Subsoil): No soil or subsoil esposed		
Surface Water Pondir	ng; None Lal	kes: None within 500m	
Beaches/Shellfish: N	None Are	eas/Wetlands: None	
Karst Features: None	e Wa	tercourse/Stream*:	None within 500m
Drainage Ditches*:	Along road Dry at 0.5m	rings / Wells*: Area s	erved by mains
	ove in order to comment on: the potential suitability of the of the proposed system within the site).	e site, potential targets at risk	, the suitability of the site to treat the
	despite very heavy rainfall in previous days, ic tank tha is operating from a visual inspection sug	gesting there is good soal	age

^{*}Note and record water level

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas, which are at or adjacent to significant sites (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.), without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial hole (m): 0.90					
Depth from ground surface to bedrock (m) (if present):		oth from grou vater table (m			
Depth of water ingress:	Rock typ	e (if present):			
Date and time of excavation: 2	3/08/2019	Date a	nd time of examina	ation: 02/09/201	9
Depth Soil/Subsoil of P/T Texture & Test* Classification**	Plasticity and dilatancy***	Soll Structure	Density/ Compactness	Colour***	Preferential flowpaths
0.1 m P Top soil - loam 0.2 m P	dilatant	Crumb	Firm	Black	Rootlets Roots of trees
0.3 m P,	Poorly Dilatent Trds= 11,9,11 Ribs = 110,110,110	Blocky	Firm	Brown	None
Evaluation: Topsoil is likely to have good soakage.	Subsoil is a clay that	t is hallow but ha	s open structure.		

Likely T value: 30.00

Note: *Depth of percolation test holes should be indicated on log above. (Enter P or T at depts as appropriate).

^{**} See Appendix E for BS 5930 classification.

^{*** 3} samples to be tested for each horizon and results should be entered above for each horizon.

^{****} All signs of mottling should be recorded.

3.3(a) Percolation ("T") Test for Deep Subsoils and/or Water Table

Step 1: Test Hole Preparation

Step 2: Pre-Soaking Test Holes

Date and Time			
pre-soaking started	02/09/2019	02/09/2019	02/09/2019

Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3: Measuring T₁₀₀

Percolation Test Hole No.	1	2	3
Date of test	03/09/2019	03/09/2019	03/09/2019
Time filled to 400 mm	08:11	08:12	08:13
Time water level at 300 mm	09:00	09:01	09:04
Time to drop 100 mm (T ₁₀₀)	49.00	49.00	51.00
Average T ₁₀₀			49.67

If $T_{100} > 300$ minutes then T-value >90 – site unsuitable for discharge to ground

If $T_{100} \le 210$ minutes then go to Step 4;

If $T_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $T_{100} \le 210$ minutes)

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δt (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δt (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δt (min)
1	09:0	0 10:14	74.00	09:0	1 10:11	70.00	09:0	10:22	78.00
2	10:1	4 11:37	83.00	10:1	1 11:32	81.00	10:2	11:51	89.00
3	11:3	7 13:29	112.00	11:3:	2 13:42	130.00	11:5	14:05	134.00
Average ∆t Value	Local Control		89.67		Louis	93.67		المستخدمة المستحدث المستحدث	100.33
	Average A			Average /		23.42 (t ₂)	Average [Hole No		25.08 (t ₃)
Result of Test	st: T = [The second secon	23.64 (m	in/25 mm)					
Step 5: Mod Percolation Test Hole No.	***************************************	od (where T	- ₁₀₀ > 210 mi	nutes)	2			3	
Fall of water in hole (mm)	Factor c	Time K_{fs} of fall T_{mins} T_{mins}	T – Value = 4,45 / K _{is}	Factor = T _f	Time of fall K_{fs} $= T_{r}$ $/ T_{m}$ $= T_{m}$	T Value = 4.45 / K _{is}	Factor = T _f	Time of fall (mins) $= T_m$	T – Value = 4.45 / K _{/s}
300 - 250	8.1			8.1			8.1		
250 - 200 200 - 150	9.7			9.7			9.7		
150 - 100	14.1			14.1			14.1		
Average T- Value	T- Value I	Hole 1= (t ₁)	0.00	T- Value I	Hole 1= (t ₂)	0.00	T- Value	Hole 1= (t ₃)	0.00
Result of Tes	st: T =		0.00	(min/25 mr	n)				
Comments:									
								-	

3.3(b) Percolation ("P") Test for Shallow Soil / Subsoils and/or Water Table

Step 1: Test Hole Preparation

Step 2: Pre-Soaking Test Holes

Date and Time			
pre-soaking started	02/09/2019	02/09/2019	02/09/2019

Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3: Measuring P₁₀₀

Percolation Test Hole No.	1	2	3
Date of test	03/09/2019	03/09/2019	03/09/2019
Time filled to 400 mm	08:19	08:22	08:23
Time water level at 300 mm	09:26	09:28	09:27
Time to drop 100 mm (P ₁₀₀)	67.00	66.00	64.00
Average P ₁₀₀			65.67

If $P_{100} > 300$ minutes then T-value >90 – site unsuitable for discharge to ground

If $P_{100}^{100} \le 210$ minutes then go to Step 4; If $P_{100} > 210$ minutes then go to Step 5;

Step 4: Standard Method (where $P_{100} \le 210$ minutes)

Comments:

Percolation											
Test Hole		1				2			3		
Fill no.	Start Time (at 300 mm)	Finis Time (at 200 mm)	•	Δp (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δp (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)		Δp (min)
1 .	09:2	6 1	0:39	73.00	09:28	10:35	67.00	09:2	27 1	0:41	74.00
2	10:3	9 1	2:11	92.00	10:35	12:17	102.00	10:4	1 1	2:21	100.00
3	12:1	1 1	4:11	120.00	12:17	14:23	126.00	12:2	21 1	4:49	148.00
Average ∆p Value				95.00			98.33			1	07.33
	Average [Hole No			23.75 (p ₁)	Average \(\Delta \) [Hole No.2		24.58 (p ₂)	Average [Hole No	$\Delta p/4 = 0.3$		26.83 (p ₃
Result of Test: P = 25.06 (min/25 mm) Comments:											
	within the ac	centable r	ange	***************************************	water was the same of the same					•	
The P-value is	within the ac	ceptable r	ange							••	
The P-value is			nona-qui di consultad	> 210 mi	nutes)						
The P-value is Step 5: Mod			nona-qui di consultad	_o > 210 mi	nutes)						
			nona-qui di consultad	_o > 210 mi	nutes)	2			3		
The P-value is Step 5: Mod	dified Methods Time Factor = T,	nod (whe	nona-qui di consultad	P – Value = 4.45 / K _{r3}	Time T Factor o = T, (r	$\begin{array}{c c} 2\\ \text{ime}\\ \text{f fall}\\ \text{nins})\\ T_{\text{m}} \end{array} \begin{array}{c} K_{\text{fs}}\\ =T_{\text{r}}\\ /T_{\text{m}} \end{array}$	P – Value = 4.45 / K ₁₃	Factor = T,	Time of fall	K _{fs} = T _f / T _m	P – Value = 4.45 / K _{f3}
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T,	1 Time of fall (mins)	ere P ₁₀	P – Value = 4.45	Time T Factor of E T, (r)	ime K_{fs} = T , mins) $/T_{m}$	Value = 4.45	Factor = T, 8.1	Time of fall (mins)	= T,	Value = 4.45
Step 5: Mod Percolation Test Hole No. Fall of water in hole (mm)	Time Factor = T, 8.1 9.7	1 Time of fall (mins)	ere P ₁₀	P – Value = 4.45	Time T o o (r = T,	ime K_{fs} = T , mins) $/T_{m}$	Value = 4.45	Factor = T, 8.1 9.7	Time of fall (mins)	= T,	Value = 4.45
Step 5: Mode Percolation Test Hole No. Fall of water in hole (mm) 300 - 250 250 - 200 200 - 150	Time Factor = T,	1 Time of fall (mins)	ere P ₁₀	P – Value = 4.45	Time T Factor of E T, (r)	ime K_{fs} = T , mins) $/T_{m}$	Value = 4.45	Factor = T, 8.1	Time of fall (mins)	= T,	Value = 4.45
The P-value is Step 5: Mod Percolation Test Hole No. Fall of water	Time Factor = T, 8.1 9.7 11.9	Time of fall (mins) = T _m	ere P ₁₀ K _{rs} = T _r / T _m	P – Value = 4.45 / K ₁₃	Time Factor (r = T,	ime K _{rs} = T, mins) / T _m	Value = 4.45 / K ₁₃	8.1 9.7 11.9	Time of fall (mins) = T _m	= T _f / T _m	Value = 4.45

4.0 CONCLUSION of SITE CHARACTERISATION

Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater.

Suitable for 1			Discharge Route
1. Septic tank system	(septic tank and percolation area)	No	Discharge to Ground Water
2. Secondary Treatme	nt System		
a. septic tank an polishing filter	d filter system constructed on-site and ; or	Yes	
b. packaged was	stewater treatment system and polishing filter	Yes	
5.0 RECOMMEI Propose to install:	Packaged wastewater treatment system and polishing f	ilter	
and discharge to:	Ground Water	erranionista anno anno desta e pantituren e	
Trench Invert level (m):			
Site Specific Condition	ns (e.g. special works, site improvement works	s testing et	c.
It is proposed to follow the Polishing Filters - Tertiary I = 0.125 x T x PE. The proposed approach is the treated wastewater is the	a Package aeration system and to polish the effluent throamendment to the EPA code of Practice as published Feb reatment Systems) This allows the area for disposal of tre to achieve secondary treatment in an Oakstown BAF unit also the achieved by distributing the effluent from the sand filted ded that the base of the distribution gravel is at existing gravel.	. 2012 (Clarific eated wastewa and Tertiary tr r over a grave	cation on the Disposal of Effluent from ater to be calculated from the formula Are eatment in a Sand Filter. The disposal of I distribution layer. As the bedrock is at

practice using Sand certified to be of the required particle size and with a Cu <4

sand filter percolated into the gravel by gravity.

On this site the T-value is 24 and the \overrightarrow{PE} is 6. Area for disposal = 0.125 x 24 x 76 m2 = 18m2. It is recommended to double to about 50m2 The sand filter can be loaded at up to 60 litres/m2 - thus requiring 15m2 filter. It must be constructed in accordance with the EPA code of

The BAF should be at least 7m from the dwelling and 10m from all ditches. The Sand Filter and disposal pad should be located at least 10m

from all dwellings, 10m from all ditches and 3m from all boundaries. The system should be located to th rear of the site.

¹ note: more than one option may be suitable for a site and this should be recorded

² A discharge of sewage effluent to "waters" (definition includes any or any part of any river, stream, lake, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-90. Refer to Section 2.6.2.

6.0 TREATMENT SYSTEM DETAILS SYSTEM TYPE: Septic Tank System Tank Capacity (m³) Percolation Area Mounded Percolation Area No. of Trenches No. of Trenches Length of Trenches (m) Length of Trenches (m) Invert Level (m) Invert Level (m) SYSTEM TYPE: Secondary Treatment System Filter Systems **Package Treatment Systems** Media Type Area (m2)* Depth of Filter Invert Level Туре Oakstown BAF P6 Sand/Soil 6,00 Soil Capacity PE Constructed Wetland Sizing of Primary Compartment 3.50 Other m^3 SYSTEM TYPE: Tertiary Treatment System Polishing Filter: Surface Area (m2)* 15.00 Package Treatment System: Capacity (pe) or Gravity Fed: Constructed Wetland: Surface Area (m2)* No. of Trenches Length of Trenches (m) Invert Level (m) **DISCHARGE ROUTE:** Groundwater Hydraulic Loading Rate * (I/m².d) 60,00 Surface Water ** Discharge Rate (m³/hr) TREATMENT STANDARDS: BOD Total N Total P Treatment System Performance Standard (mg/l) SS NH₃ 20.00 30.00 20.00 10.00 QUALITY ASSURANCE: Installation & Commissioning On-going Maintenance

Annual maintenance contract - including desludging

* Hydrolic loading rate is determined by the percolation rate of subsoil

Installation supervised and Certified by qualified assessor or a

suitably qualified person familiar with the EPA Code of Practice 2009.

^{**} Water Pollution Act discharge licence required

7.0 SITE ASSESSOR DETAILS

Company:	Trinity Gre	een					
Prefix:	Dr.	First Name:	Eugene	Su	rname:	Bolton	
Address:	Clonfert, f	Maynooth, Co. Kil	dare				
Qualificatio	ons/Expe	erience: PhD I	Microbiology, Site Suita	ability Assessment Co	urse (FET	AC)	
Date of Re	port: 09	9/10/2019					
Phone: 08	86 2434828		Fax:		e-mail	info@trinitygreen.ie	
Indemnity	Insuranc	e Number: [F	PSE00185337				

Signature: