

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Gaelcholáiste An Phiarsaigh

DBFL

Ground Investigation Report

October 2020

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Gaelcholaiste An Phiarsaigh			
Engineer	DBFL			
Client	BOM Gaelcholaiste An Phiarsaigh			
Project No	9901-08-20			
Document Title	Ground Investigation Report			

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
А	Draft	M Sutton	A McDonnell	A McDonnell	Dublin	25 September 2020
А	Final	M Sutton	A McDonnell	A McDonnell	Dublin	30 October 2020

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	1
2.0	Overview	1
2.1.	Background	1
2.2.	Purpose and Scope	1
3.0	Subsurface Exploration	1
3.1.	General	1
3.2.	Foundation Pits	2
3.3.	Soakaway Testing	2
3.4.	Window Sampling	2
3.5.	Dynamic Probing	2
3.6.	Cable Percussion Boreholes	2
3.7.	Surveying	3
3.8.	Groundwater/Gas Monitoring Installations	3
3.9.	TRL Dynamic Cone Penetrometer	3
3.10.	Laboratory Testing	4
4.0	Ground Conditions	4
4.1.	General	4
4.2.	Insitu Strength Testing	5
4.3.	Groundwater	5
4.4.	Laboratory Testing	5
4.4.1.	Geotechnical Laboratory Testing	5
4.4.1.	Chemical Laboratory Testing	5
4.4.1.	Environmental Laboratory Testing	6
5.0	Recommendations & Conclusions	7
5.1.	General	7
5.2.	Foundations	7
5.3.	External Pavements	7
5.4.	Excavations	8
5.5.	Soakaway Design	8

Geotechnical & Environmental

APPENDICES

Appendix 9

Appendix 1 Site Location Plan Appendix 2 **Foundation Pit Records Soakaway Test Records** Appendix 3 Appendix 4 **Window Sample Records** Appendix 5 **Dynamic Probe Records Cable Percussion Borehole Records** Appendix 6 Appendix 7 **TRL Probe Records** Appendix 8 **Laboratory Testing**

Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

1.0 Preamble

On the instructions of DBFL Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between August and September 2020 at the site of the proposed School extension at Gaelcholaiste An Phiarsaigh, Rathfarnham, Dublin.

2.0 Overview

2.1. Background

It is proposed to construct an extension to the existing school with associated services, access roads and car parking at the proposed site. The site is currently occupied by exiting school buildings and is situated to the south Rathfarnham. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 5 No. Foundation Inspection Pits to determine existing foundation details
- Carry out 3 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 6 No. Window Sample Boreholes to recover soil samples
- Carry out 8 No. Dynamic Probes to determine soil strength/density characteristics
- Carry out 6 No. TRL DCP tests to determine CBR Values
- Carry out 1 No. Cable Percussion boreholes to a depth of 4.3m BGL
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Foundation Pits

The foundation pits were excavated using a 3T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The foundation inspection pits were excavated at the locations shown in the exploratory hole location plan in Appendix 1. The exposed foundations were logged and sketched prior to backfilling and reinstatement. The logs and sketches are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Window Sampling

The window sampling was carried out at the locations shown in the location plan in Appendix 1 using a Tecopsa SPT Tec 10 percussion drilling rig. The window sampling consists of a 1m long steel tube with a cutting edge and an internal plastic liner which is mechanically driven into the ground utilising a 50kg weight falling a height of 500mm. Upon completion of the 1m sample, the tube is withdrawn and the plastic liner removed and sealed for logging and sub sampling by a Geotechnical Engineer/Engineering Geologist. The tube is replaced in the borehole and a subsequent 1m sample can be recovered. Occasionally outer casing or a reduced diameter tube is utilised to enable the window sample to progress in difficult drilling conditions. Geotechnical or environmental soil samples can be recovered from each of the liners following logging. The window sample records are provided in Appendix 4 of this Report.

3.5. Dynamic Probing

The dynamic probe tests (DPH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50kg weight in 100mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300mm drive length by 1.5. The dynamic probe logs are provided in Appendix 5 of this Report.

3.6. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 6 of this Report.

3.7. Surveying

Where possible the exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. In some areas GPS surveying was not possible due to the proximity to surrounding buildings therefore the locations were measured from existing site features. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.8. Groundwater/Gas Monitoring Installations

Groundwater and or Gas Monitoring Installation were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.9. TRL Dynamic Cone Penetrometer

The TRL DCP tests were carried out at locations specified by the Consulting Engineer to determine a CBR design value for the design of external pavements. The testing was carried out below the Topsoil or existing pavement at the depths detailed on the test report. The test consists of dropping a 10kg weight on an anvil

to drive a small diameter cone and recording the blows for a given penetration. The results of the DCP testing is included in Appendix 7 of this Report.

3.10. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits and Particle Size Distribution (PSD) were carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 8 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site and are generally comprised;

- Topsoil/Surfacing
- Made Ground
- Cohesive Deposits
- Granular Deposits

TOPSOIL: Topsoil was encountered in IT01 to IT03 and WS03, WS05 and WS07 was present to a maximum depth of 0.3m BGL. Made ground was encountered from the surface in the other window samples and the majority of the foundation pits. Concrete surfacing was present in TP04.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing or from the surface and were present to depths of between 0.6m and >3.0m BGL. It should be noted that base of the made ground was not encountered in WS03 at a depth of 3m BGL. These deposits were described generally as brown sandy slightly gravelly CLAY with occasional cobbles and boulders and contained occasional fragments of concrete, red brick and glass.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown or black slightly sandy slightly gravelly CLAY with occasional cobbles and*

boulders. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff or stiff below depths of 1.3m to 1.8m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: The granular deposits in WS06 and were described as Grey brown clayey gravelly fine to coarse SAND. Based on the SPT N values the deposits are typically medium dense.

4.2. Insitu Strength Testing

The correlated DPH blow counts indicate that the made ground deposits are weak and the cohesive overburden deposits are generally firm to stiff of stiff however in WS04 soft to firm deposits were encountered to a depth of 1.70m BGL

4.3. Groundwater

No groundwater was noted during the investigation however we would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in WS06A to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 9 of this Report.

4.4. Laboratory Testing

4.4.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 21.1% and 49.5% generally with fines contents of 29.4 to 35.1%.

4.4.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.4.1. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. The waste classification report is included under the cover of a sperate report by Ground Investigations Ireland.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 125 kN/m² is recommended for conventional strip or pad foundations on the firm to stiff or stiff cohesive deposits at a depth of between 1.8 and 2.0m BGL.

In some areas made ground is deeper, such as at the location of WS03. If structures are proposed at this location the depth to suitable founding strata should be proven and lean mix trench fill to the depth of the founding strata is recommended to achieve the recommended allowable bearing capacity.

The possibility for variation in the depth of the made ground in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

In any part of the site, should part of the foundation be on rock we would recommend that all the foundations of the unit in question be lowered to the competent rock stratum to avoid differential settlement.

A ground bearing floor slab is recommended to be based on the firm to stiff cohesive deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014 +A1:2016 and/or NRA SRW CL808 Type E granular stone fill. Where the depth of Made Ground/Soft deposits exceeds 0.9m then suspended floor slabs should be considered.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendixes of this Report. The low CBR test results indicate that a capping layer or a

sufficient depth of crushed stone fill may be required. It should be noted that variable depths of made ground were encountered across the site so inspections should be undertaken.

Plate bearing tests are recommended at the time of construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.

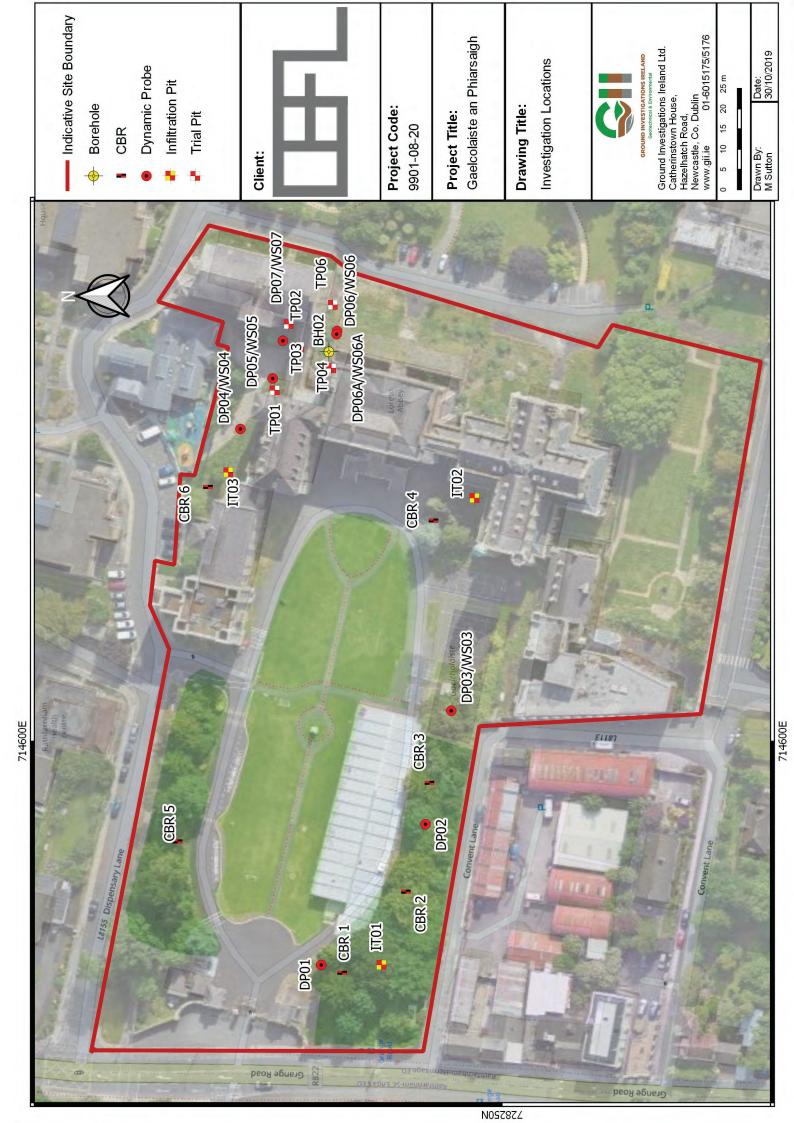
5.4. Excavations

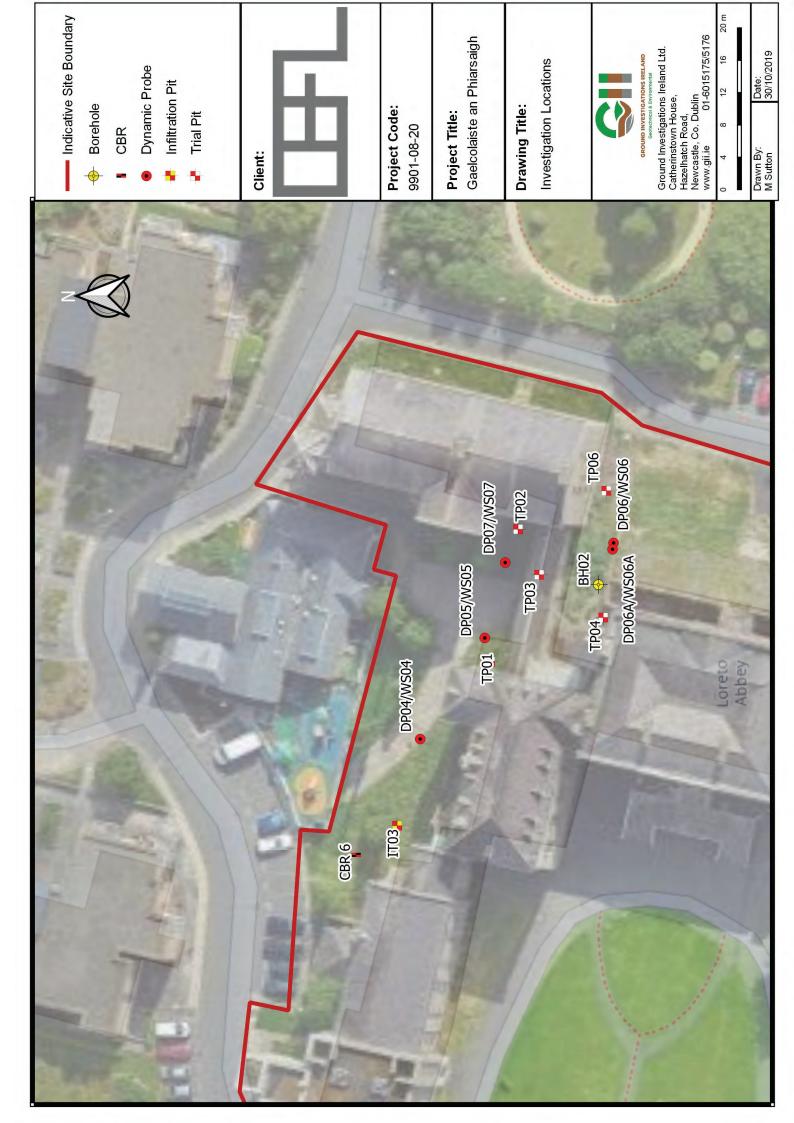
Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported and may require dewatering.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations.


5.5. Soakaway Design

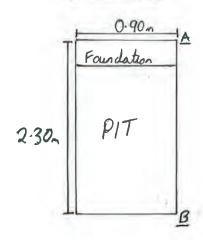

Infiltration rates of f=4.09 x 10⁻⁶ m/s was calculated for the soakaway location IT01, however it should be noted that made ground was encountered for the full depth of the pit and results could vary at different locations. At the locations of IT02 and IT03 the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

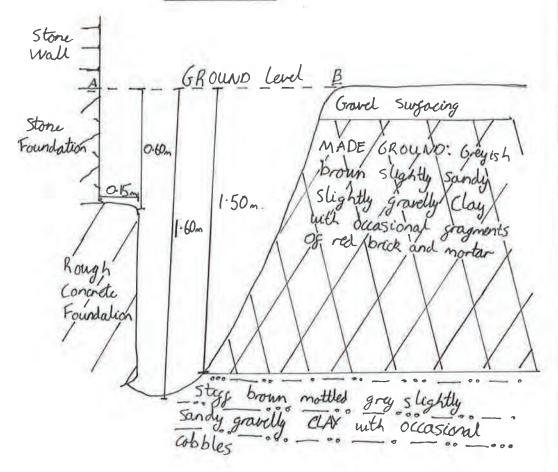
APPENDIX 1 - Site Location Plan



APPENDIX 2 – Foundation Pit Records



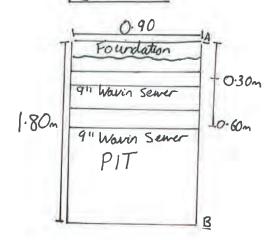
Project:	Gaelcholaiste Phiarsaigh	TP01		
Engineer:	DBFL			
Contractor	Ground Investigations Ireland Ltd	estigations Ireland Ltd Date 28/08/202		

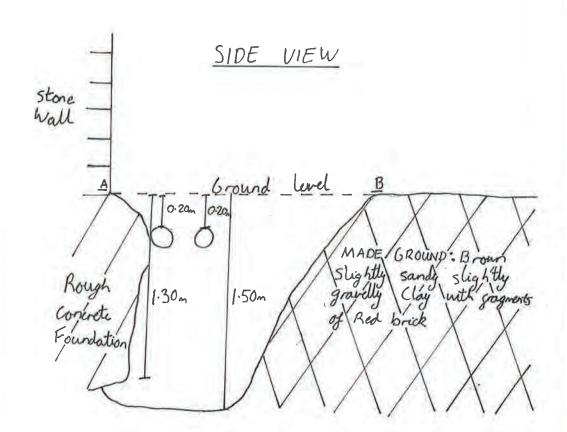


Foundation Sketch

Plan VIEW

SIDE VIEW

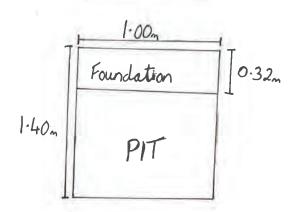

Project:	Gaelcholaiste Phiarsaigh		TP02		
Engineer:	DBFL		11 02		
Contractor	Ground Investigations Ireland Ltd	Date	28/08/2020		

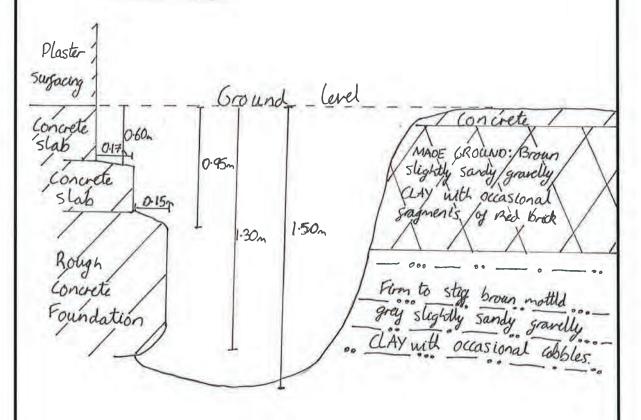


Cignorial folians acs

Foundation Sketch

PLAN VIEW

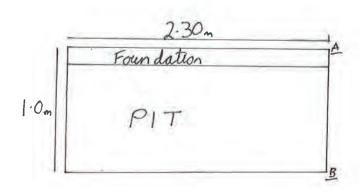

Project:	Gaelcholaiste Phiarsaigh	TP03		
Engineer:	DBFL	11 05		
Contractor	Ground Investigations Ireland Ltd	Date 28/08/2020		

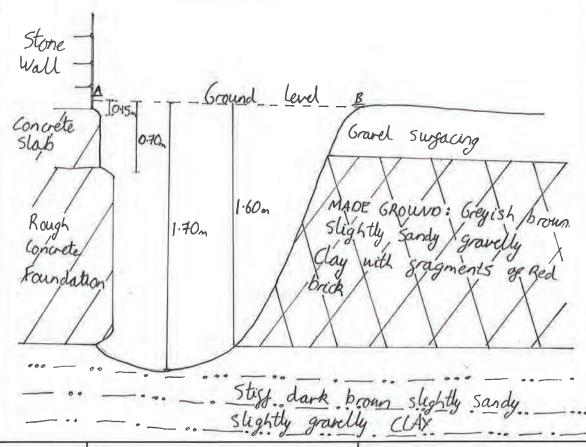


Foundation Sketch

PLAN VIEW

SIDE VIEW


Project:	Gaelcholaiste Phiarsaigh	TP04		
Engineer:	DBFL	1104		
Contractor			28/08/2020	



Foundation Sketch

PLAN VIEW

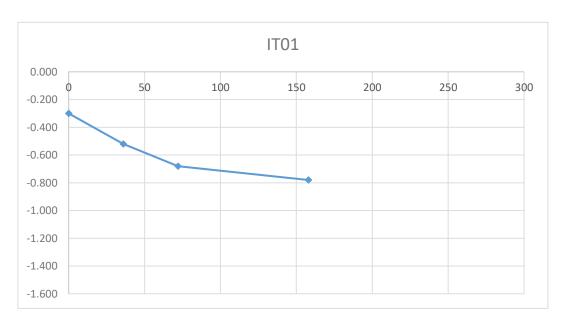
SIDE VIEW

Project:	Gaelcholaiste Phiarsaigh		TP06	
Engineer:	DBFL	11 00		
Contractor	Ground Investigations Ireland Ltd	Date	28/08/2020	

TP02 Redig

TP02 redig

APPENDIX 3 – Soakaway Records


Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

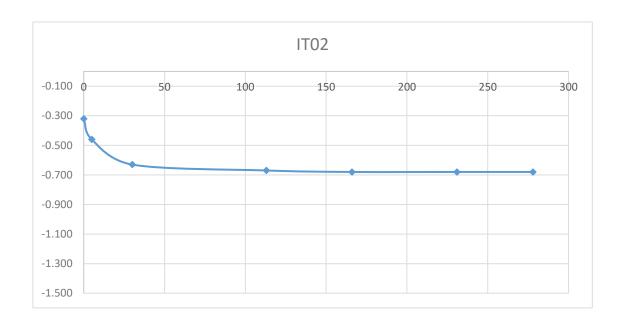
IT01
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 1.40m x 0.40m 1.60m (L x W x D)

Date	Time	Water level (m bgl)
29/08/2020	0	-0.300
29/08/2020	36	-0.520
29/08/2020	72	-0.680
29/08/2020	158	-0.780

Start depth Depth of Pit Diff 75% full 25%full 0.43 1.600 1.170 0.7225 1.3075 Length of pit (m) Width of pit (m) 75-25Ht (m) Vp75-25 (m3) 1.400 0.585 0.33 Tp75-25 (from graph) (s) 30000 50% Eff Depth ap50 (m2) 2.666 0.585 f = 4.096E-06 m/s

IT02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.5m x 0.40m 1.5m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


01 601 5175 / 5176 Tel: Email: info@gii.ie Web: www.gii.ie

Date	Time	Water leve (m bgl)
29/08/2020	0	-0.320
29/08/2020	5	-0.460
29/08/2020	30	-0.630
29/08/2020	113	-0.670
29/08/2020	166	-0.680
29/08/2020	231	-0.680
29/08/2020	278	-0.680

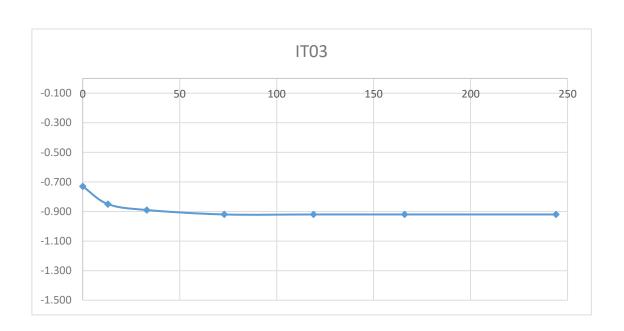
*Soakaway failed - Pit backfilled

level

Start depth **Depth of Pit** 75% full 25%full Diff 1.500 0.32 1.180 0.615 1.205

IT03
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 1.5m x 0.40m 1.5m (L x W x D)

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52


Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
29/08/2020	0	-0.730
29/08/2020	13	-0.850
29/08/2020	33	-0.890
29/08/2020	73	-0.920
29/08/2020	119	-0.920
29/08/2020	166	-0.920
29/08/2020	244	-0.920

*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.73
 1.500
 0.770
 0.9225
 1.3075

	Ground Investigations Ireland Ltd www.gii.ie				Site Gaelcholaiste an Phiarsaigh, Rathfarnham IT0			
Machine :		Dimensions 1.40x0.40x1.60		Ground Level (mOD) C 52.80		Client		Job Number 9901-08-20
			n (Observed measurements) 4544.6 E 728279.6 N	Dates 29	/08/2020	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Variet
0.50	В			52.50	- (0.30) - 0.30 - 0.30 (1.30) (1.30)	Dark brown/grey slightly sandy slightly gravelly TOPSOIL with rootlets. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Brown slightly sandy slightly gravelly Sil with occasional cobbles red brick and glass fragments. Gravel is subangular to subrounded fine to coarse.		
1.50	В			51.20	1.60	Complete at 1.60m		
Plan .						Remarks Trial Pit stable.		
						No Groundwater encounters Infiltration Test undertaken in Trial pit backfilled upon com Coordinates based on site n estimated from topo survey	ed during excavation. n pit. pletion. neasurmens and taken from	GIS / Levels
					.	Scale (approx)	Logged By C.Byrne	Figure No. 9901-08-20.IT01

	1 50% 10% 1 50				Ltd	Gaeidibiaiste an Filiaisaigh, Nathiainnain				
Machine: 3						Level (mOD) 52.40	Client		Job Number 9901-08-20	
			n (Observed measur 4660.1 E 728256.6 N	,	Dates 29	/08/2020	Engineer DBFL		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ds	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nate	
0.50	В				52.15 51.50	(0.25) - (0.25) - (0.65) - (0.65) - (0.90	MADE GROUND: Brown s Clay with occasional cobb Gravel is subangular to su	slightly sandy gravelly CLAY onal boulders. Gravel is	,	
1.50	В				50.90	(0.60)	Complete at 1.50m			
Plan _							Remarks			
							Trial Pit stable. No Groundwater encountere Infiltration Test undertaken in Trial pit backfilled upon com Coordinates based on site n	ed during excavation. n pit. pletion. neasurmens and taken from	GIS / Levels	
							estimated from topo survey			
							Scale (approx)	Logged By	Figure No.	
							1:25	C.Byrne	9901-08-20.IT02	

	Grou	nd In	vestigations Ire www.gii.ie	Ltd	Site Gaelcholaiste an Phiarsai	gh, Rathfarnham	Trial Pit Number IT03	
Machine : 3		Dimens 2.50x0.	ions 40x1.50		Level (mOD) 52.00	Client		Job Number 9901-08-20
			n (Observed measurements) 4666.5 E 728317.5 N	Dates 29	/08/2020	Engineer DBFL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
				54.70	(0.30)		gravelly TOPSOIL with roo brounded fine to coarse.	
0.50	В			51.70	- 0.30 - - - - -	MADE GROUND: Brown s Clay with occasional cobb fragments. Gravel is subar coarse.	slightly sandy slightly gravell les red brick and concrete ngular to subrounded fine to	y
					(0.90) - - - -			
				50.80	1.20	Soft to firm brownish grey some subangular to subro subangular to subrounded	slightly sandy gravelly CLA\ unded cobbles. Gravel is fine to coarse.	/ with
1.50	B			50.50		Complete at 1.50m		
Plan .					•	Remarks		
						Trial Pit stable. No Groundwater encountere Infiltration Test undertaken in Trial pit backfilled upon com Coordinates based on site n estimated from topo survey	ed during excavation. n pit. pletion. neasurmens and taken from	GIS / Levels
						Scale (approx) 1:25	Logged By C.Byrne	Figure No. 9901-08-20.IT03

TP01

IT02

IT03

APPENDIX 4 – Window Sample

			_td	Site Gaelcholaiste an Phiarsaigh, Rathfarnham	Numbe			
Method : D		88			Level (mOD) 53.10	Client	Job Numbe 9901-08	
			n (Observed measurements) 4607.6 E 728262.6 N	Dates 28	/08/2020	Engineer DBFL	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.00-1.00	В			53.00	(0.10) - (0.10) - (1.00)	Dark brown slightly sandy slightly gravelly TOPSOIL with rootlets. MADE GROUND: Brown slightly sandy slightly gravelly SILT with red brick and concrete fragments. Gravel is subangular to subrounded fine to coarse.		
1.00-2.00	В			52.00	1.10	MADE GROUND: Brown slightly sandy slightly gravelly si CLAY with red brick and concrete fragments. Gravel is subangular to subrounded fine to coarse.	ty	
2.00-3.00	В			50.90	2.20	MADE GROUND: Dark brown slightly sandy slightly gravelly Clay wit red brick and concrete fragments. Grave is subangular to subrounded fine to coarse.	ı	
Remarks				50.10	3.00	Complete at 3.00m		
Remarks 55% Recove 70% Recove 95% Recove Coordinates	ery from 0.00m to 1.0 ery from 1.00m to 2.0 ery from 2.00m to 3.0 based on site measu	0m BGL. 0m BGL. 0m BGL. urmens ar	nd taken from GIS / Levels esti	mated fror	m topo survey	Figu		ne

	Groun	nd In	vestigations Irel	land	l td	Site		Number
*	Groun	iu iii	www.gii.ie	iaiiu	Liu	Gaelcholaiste an Phiarsaigh, Rathfarnham		WS04
Method : [GEOTECH 10 Drive-in Windowless Sampler	Dimens 88	ions mm to 2.00m		Level (mOD) 52.30	Client		Job Number 9901-08-20
		Locatio	n (Observed measurements)	Dates	10012020	Engineer		Sheet
		71	4677.3 E 728314.8 N	21	//08/2020	DBFL		1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend Nater
					(0.30)	MADE GROUND:Reddish brown slightly sandy slig gravelly Clay with red brick fragments. Gravel is su to subrounded fine to coarse.	ghtly bangular	
0.30-0.55	В			52.00	0.30	MADE GROUND: Grey slightly sandy clayey anguls subrounded fine to coarse Gravel with occasional a cobbles and red brick fragments.	ar to angular	
0.55-1.00	В			51.75	_	MADE GROUND: Light brown slightly sandy slightly gravelly Clay. Gravel is subangular to subrounded coarse.	y fine to	
				54.00	(0.45)			
1 20 2 00	В			51.30 51.10	1.00 (0.20) 1.20	MADE GROUND: Grey sandy clayey angular to subrounded fine to coarse Gravel.	A)/ '(I	
1.20-2.00	Б					Soft to firm brown slightly sandy slightly gravelly CL occasional subangular to subrounded cobbles. Grasubangular to subrounded fine to coarse.	avel is	0 0 0 0 0 0 0 0
				50.60				0 . 0 4 .
				30.00	(0.30)	Firm to stiff brown slightly sandy slightly gravelly Cl occasional subangular to subrounded cobbles. Gra subangular to subrounded fine to coarse.	LAY with avel is	0 . 2 4 . 2 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
				50.30	2.00	Complete at 2.00m		6-500.
					_ _ _			
					- - -			
					_ _ _			
					<u>-</u> - -			
					_ _ _			
					_ - -			
					<u>-</u>			
					_ - -			
					_ _ _			
					- - - -			
Remarks					-		Scalo	Lonned
80% Recov 80% Recov	ery from 0.00m to 1.0 ery from 1.00m to 2.0 s based on site measu	0m BGL.	nd taken from GIS / Levels esti	mated froi	m topo surve		Scale (approx)	Logged By C. Byrne
							Figure N	-

C	Ground Investigations Ireland Ltd www.gii.ie			Ltd	Site Gaelcholaiste an Phiarsaigh, Rathfarnham		Number		
			www.gii.ie			-		WS05	
Method : D	GEOTECH 10 Orive-in Windowless Campler	Dimens 88	ions mm to 2.00m		Level (mOD) 52.30	Client	!	Job Number 9901-08-20	וכ
		Locatio	n (Observed measurements)	Dates	/08/2020	Engineer		Sheet	
		71	4689.8 E 728306.8 N	20		DBFL		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend to the second to the se	1
					 (0.30)	Dark brown slightly sandy peaty TOPSOIL with rootlets	S.		
				52.00	0.30	MADE GROUND: Brown slightly sandy slightly gravelly Clay with occasional subangular to subrounded cobble and fragments of red brick. Gravel is subangular to subrounded fine to coarse.	y es		
					- - - - - (1.00)	Subrounded line to coarse.	\$ ** **		
1.00-1.40	В				(1.00) 		× × × × × × × × × × × × × × × × × × ×		
					_				
1.40-2.00	В			51.00	1.30	Stiff brown slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles. Gravel subangular to subrounded fine to coarse.	l is		
							:	• • • • •	
					-			• • • •	
				50.30	2.00	Complete at 2.00m			
					_	Complete at 2.00m			
					_ _ _				
					- -				
					_				
					-				
					<u> </u>				
					_				
					-				
					<u> </u>				
					- -				
					_				
					_				
100% Recov	ery from 0.00m to 1.0 very from 1.00m to 2.	00m BGL	•				Scale oprox)	Logged By	1
Coordinates	based on site measu	ırmens ar	nd taken from GIS / Levels esti	mated fror	n topo survey	1	1:25	C. Byrne	
							igure No 9901-08-	o. 20.WS05	

S I	Ground Investigations www.gii.ie chine: GEOTECH 10 hod: Drive-in Windowless Sampler Dimensions 88mm to 1.60m			land	Ltd	Site Gaelcholaiste an Phiarsaigh, Rathfarnham		Number	
Method : D	rive-in Windowless		ions		Level (mOD) 52.40	Client		Job Number 9901-08-	- 1
			n (Observed measurements) 4701.5 E 728290.9 N	Dates 28	/08/2020	Engineer DBFL		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
Depth (m)	B	Water Depth (m)	Field Records	52.05 51.75 51.80	(0.35) - (0.35) - (0.30) - (0.65) - (0.65)	MADE GROUND: Dark grey sandy angular to subrine to coarse Gravel. MADE GROUND: Brown slightly sandy slightly gray Clay with occasional subangular to subrounded congravel is subangular to subrounded fine to coarse. Medium dense dark brown clayey gravelly fine to complete is subangular to subrounded fine to subrounded fine to subrounded cobbles. Gray subangular to subrounded fine to coarse. Complete at 1.60m	velly bbles. 	Legend	Water
90% Recove	ery from 0.00m to 1.0 ery from 1.00m to 1.6 based on site measu	0m BGL.	nd taken from GIS / Levels esti	mated froi	m topo survey		Scale (approx)	Logged By	
					. ,		1:25 Figure N	C. Byrne o. -20.WS06	

	Groui	WWW.GII.IE Dimensions Ground Level (mOD) Clier			Site Gaelcholaiste an Phiarsaigh, Rathfarnham			umber S06A	
Machine : (GEOTECH 10	Dimens	ions	Ground	Level (mOD)	Client		Jo	
	Orive-in Windowless Sampler	88 68	mm to 2.00m mm to 2.45m		52.40				u mber 01-08-20
	•	Locatio	n (Observed measurements)	Dates		Engineer		SI	neet
		71	4700.8 E 728291 N	15	5/10/2020	DBFL			1/1
Depth (m)		Water		Level (mOD)	Depth		Legend	ter	
(m)	Sample / Tests	Water Depth (m)	Field Records	(mOD)	Depth (m) (Thickness)	Description	Legend	Wa	Instr
				52.10 51.40 51.20	- (0.70) - (0.70) - (0.20) - 1.20 - (1.25)	MADE GROUND: Black slightly sandy clayey angular fine to coarse Gravel. Poor recovery, Recovery of MADE GROUND: brown mottled black slightly sandy slightly gravelly Clay. Brown slightly sandy slightly gravelly CLAY. Grave is subangular to subrounded fine to coarse. No Recovery.			
0% Recove Slotted pipe	ery from 0.00m to 1.0 ery from 1.00m to 2.0 ry from 1.00m to 2.00 installed with pea gra	m BGL.		plain pipe	and bentonite	e seal from 1.0m BGL to GL finished with a flush	Scale (approx)		ogged V Byrne
Slotted pipe installed with pea gravel surround from 2.45m to 1.0m BGL, plain pipe and bentonite seal from 1.0m BGL to GL finished with a flush cover. Coordinates based on site measurmens and taken from GIS / Levels estimated from topo survey							1:25 Figure N	Byrne	
					•		9901-08		WS06A

	Grou	nd In	vestigations Ire	land	Ltd	Site Gaelcholaiste an Phiarsaigh, Rathfarnham		Number WS07	
Machine : (GEOTECH 10	Dimens		Ground	Level (mOD)	Client		Job Number	
	Orive-in Windowless Sampler	88ı 68ı	mm to 2.00m mm to 2.50m		52.40			9901-08-20	0
		Locatio	n (Observed measurements)	Dates	/08/2020	Engineer		Sheet	
		714	4699.1 E 728304.3 N	20	70072020	DBFL		1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend ja ja	
0.10-0.60	В			52.30 51.80	(0.10) - (0.10) - (0.10) - (0.50) - (0.50)	Brown slightly sandy slightly gravelly TOPSOIL wi MADE GROUND: Brown slightly sandy slightly gravelly clay with occasional subangular to subrounded cand fragments of red brick and concrete. Gravel is subangular to subrounded fine to coarse.	avelly obbles s		
0.60-2.50	В			51.80		Stiff brown slightly sandy slightly gravelly CLAY w occasional subangular to subrounded cobbles. Gravely subangular to subrounded fine to coarse. Complete at 2.50m	ith ravel is		
180% Recov	ery from 0.00m to 1.0 ery from 1.00m to 2.0 ery from 2.00m to 2.5 s based on site measu	0m BGL.	nd taken from GIS / Levels esti	mated froi	m topo survey		Scale (approx)	Logged By C. Byrne	_
							Figure N	lo. -20.WS07	

WS03

WS04



Window Sample Photographs- Gaelcholaiste Phiarsaigh DBFL – 9901-08-20

WS05

WS06

Window Sample Photographs- Gaelcholaiste Phiarsaigh DBFL – 9901-08-20

WS06A

WS07

APPENDIX 5 – Dynamic Probes

C	Ground Investigations Ireland Ltd www.gii.ie Cone Dimensions Ground Level (mOI						Site Gaelcholaiste an Phiarsaigh, Rathfarnham							Probe Number DP01	
Method Dynamic Pro														Job Numl	ber
Hammer We	eight 50kg	Location (Observed measurements) 714544.6 E 728294.8 N	Dates 28/	08/2020	Engine DBFL									Shee 1/	t
Depth (m)	Blows for Depth Increment		Level (mOD)	Depth (m)					for De						
0.00-0.10	1		52.00	0.00	0	3 (6	9	12	15	18 2	21 2	24 2	27	30
0.10-0.20	2			-											
0.20-0.30 0.30-0.40	4 2														
0.40-0.50 0.50-0.60	4 3		51.50	0.50											+
0.60-0.70	2		01.00	- - -											-
0.70-0.80 0.80-0.90	3 2			 _ _ -											+
0.90-1.00 1.00-1.10	3 2		51.00	1.00											+
1.10-1.20	3														
1.20-1.30 1.30-1.40	3 10			-											
1.40-1.50 1.50-1.60	15 14		50.50	 1.50											
1.60-1.70	19														+
1.70-1.80 1.80-1.90	12 18														+
1.90-2.00 2.00-2.10	10 8		50.00	2.00											-
2.10-2.20	21			<u>-</u> -											
2.20-2.30 2.30-2.40	17 13			- - -											
2.40-2.50 2.50-2.60	12 23		49.50	 2.50											
2.60-2.70	20			<u>-</u>											T
2.70-2.80	24			<u>-</u>											+
			49.00	3.00											-
				 - -											
				<u>-</u> -											
			48.50												T
				<u> </u>											+
				_											-
			48.00	4.00											
				<u>-</u> -											
				- -											
			47.50	4.50											_
															+
				<u>-</u> -											
			47.00	 5.00											
Remarks Completed	d at 2.80m BGL.	1										S (a	Scale approx)	Logg By	ed
Coordinate	es based on site m	easurmens and taken from GIS / Level	estimated [*]	from topo sur	vey								1:25		yrne
													igure		,
												9901-0	8-20.D)P01	

G	Ltd	Site Gaelcholaiste an Phiarsaigh, Rathfarnham							Prob Num DP						
	I.	www.gii.ie)2
Method Dynamic Pro Fall Height & Hammer We	obe Heavy DPH 500mm eight 50kg	Cone Dimensions		Level (mOD) 52.90	Client									Job Numb 9901-0	
		Location (Observed measurements)	Dates		Engin									Sheet	
		714579.5 E 728269 N	28/0	08/2020	DBF	L 								1/	_
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	6	12				rement 36 4		48 5	54 (60
0.00-0.10 0.10-0.20	3		52.90	0.00											
0.20-0.30 0.30-0.40	5 5			- -											-
0.40-0.50 0.50-0.60	4 2		52.40	- - - - 0.50		1									_
0.60-0.70	3		02.10	_ 	Н										+
0.70-0.80 0.80-0.90	3 4			 - 											
0.90-1.00 1.00-1.10	9 21		51.90	1.00											
1.10-1.20	25			_											
1.20-1.30 1.30-1.40	22 14														
1.40-1.50 1.50-1.60	13 12		51.40	 1.50			T								
1.60-1.70	9			_											-
1.70-1.80 1.80-1.88	7 60			- -											60
			50.90	2.00											+
				-											_
			50.40	2.50 											
				-											
				-											
			49.90	3.00											-
				<u>-</u>											\vdash
			40.40	- 2.50											-
			49.40	— 3.50 - - -											_
															_
			48.90	4.00											_
				-											
				- -											
			48.40	4.50											
				 - 											$\lceil \rceil$
			47.00	- - - -											
Remarks	1.88m BGL.		47.90	5.00								<u> </u>	Scale approx)	Logge	ed
60 Hamme Coordinate	er Blows for 80mm es based on site m	penetration. easurmens and taken from GIS / Levels	estimated	I from topo su	rvey									С . Ву	
												1:25 Figure		ine	
												9901-0	8-20.D	P02	

						holaiste	an Phi	arsaigh	ı, Rathf	arnham	1		Probe Number		
Method Dynamic Pr Fall Height Hammer W	obe Heavy DPH 500mm			Level (mOD) 53.10	Client								!	Job Num k 9901-0	
Transition VV	oight ookg	Location (Observed measurements) 714607.6 E 728262.6 N	Dates 28/0	08/2020	Engine DBFL	er								Sheet	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 4	4 8					rement		32 3	36 4	40
0.00-0.10	2		53.10	0.00											\forall
0.10-0.20 0.20-0.30	3														\perp
0.30-0.40	4			 - 											
0.40-0.50 0.50-0.60	4 5		52.60	0.50											
0.60-0.70	7			 - -											-
0.70-0.80 0.80-0.90	8 9			<u>-</u> -											+
0.90-1.00 1.00-1.10	9 9		52.10	1.00											<u> </u>
1.10-1.20	7														
1.20-1.30 1.30-1.40	7 6			<u> </u>											
1.40-1.50 1.50-1.60	7 6		51.60	 											
1.60-1.70	7			<u>-</u> -											+
1.70-1.80 1.80-1.90	7 5														\perp
1.90-2.00 2.00-2.10	16 10		51.10												
2.10-2.20	7														
2.20-2.30 2.30-2.40	14 8			 											
2.40-2.50 2.50-2.60	8 7		50.60	- - - 2.50											+-
2.60-2.70	7		30.60	2.50 											\perp
2.70-2.80 2.80-2.90	11 12			 											
2.90-3.00	10			<u>-</u> -											
3.00-3.10 3.10-3.20	9 36		50.10	— 3.00 —											
3.20-3.30 3.30-3.40	24 25			<u>-</u> -											+
3.30-3.40	25														
			49.60	3.50 											
				- - -											
				 -											
			49.10	4.00											+
															\perp
				 _ _											
			48.60	4.50											
				 - 											
				<u>-</u> -											+
			48.10	5.00											\perp
Remarks Complete	at 3.40m BGL.	Niggont to MS02										(á	Scale approx)	Logg By	ed
Coordinat	es based on site m	djacent to WS03. easurmens and taken from GIS / Levels	estimated	I from topo su	rvey								1:25	C. By	/rne
													igure l		\dashv
											9901-0	8-20.D	P03		

GI	Ground Investigations Ireland Ltd www.gii.ie Ground Level (mg						Site Gaelcholaiste an Phiarsaigh, Rathfarnham								Probe Number DP04	
Method	Method Cone Dimensions Ground Level (mOD)				Client	<u> </u>									Job	04
	obe Heavy DPH 500mm	Cone Dimensions		52.30	Ollerin										Num 9901-	
Tiamine We	signt ookg	Location (Observed measurements)	Dates		Engin	eer									Shee	
	1	714677.3 E 728314.8 N	27/0	08/2020	DBF	L									1	/1
Depth (m)	Blows for Depth Increment	field Records	Level (mOD)	Depth (m)	0	4	8	12				remen 24	t 28	32	36	40
0.00-0.10	3		52.30	0.00												+
0.10-0.20	3			-		Ц.										_
0.20-0.30 0.30-0.40	5 5															
0.40-0.50 0.50-0.60	6 5		51.80	0.50												
0.60-0.70	3			<u> </u>		Т										+
0.70-0.80 0.80-0.90	2 2															+
0.90-1.00 1.00-1.10	1 2		51.30	1.00												4
1.10-1.20	3			<u>-</u>		1										
1.20-1.30 1.30-1.40	2 4															\top
1.40-1.50 1.50-1.60	5 4		50.80	1.50												+
1.60-1.70	4		30.00	- - -												+
1.70-1.80 1.80-1.90	9 12															1
1.90-2.00	15		50.00	-												
2.00-2.10	6		50.30	2.00 												
2.20-2.30	8															+
2.30-2.40 2.40-2.50	22 18															+
2.50-2.60	20		49.80	— 2.50 —												
2.60-2.70 2.70-2.80	28			-							\vdash					
2.80-2.90	33			<u>-</u> -												+
			49.30	3.00												+
				 												_
			48.80	3.50												
				 												+
				- -												+
			48.30	4.00												1
																T
			47.80	4.50												+
																+
			47.00	- 500												
Remarks				5.00										Scale (approx	Logo	=== ged
Complete Dynamic p	at 2.90m BGL. probe completed ac	djacent to WS04. easurmens and taken from GIS / Levels	: estimated	I from topo su	ırvev									(approx)	By	
Coordinate	oo bassa on sile III	iododiniono dna taken nom Gio / Levels	, commatet	a monii topo su	v e y									1:25 Figure		Byrne
														9901-0		DP04

	Gro	und Investigations Ir www.gii.ie	eland	l Ltd	Site Gaelo	holaiste	an Ph	iarsaigh	ı, Rathf	arnham	l			Probe Numb	
Method Dynamic Pr Fall Height Hammer W	obe Heavy DPH 500mm eight 50kg	Cone Dimensions		Level (mOD) 52.30	Client									Job Numb 9901-08	
		Location (Observed measurements) 714689.8 E 728306.8 N	Dates 27/0	08/2020	Engine DBFL									Sheet 1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3			for De _l				24 2	27 3	30
0.00-0.10	0		52.30	0.00											
0.10-0.20	2			_											
0.20-0.30 0.30-0.40	5 21														
0.40-0.50 0.50-0.60	12 4		51.80	0.50											
0.60-0.70	4			<u>-</u> -											-
0.70-0.80 0.80-0.90	2 3														
0.90-1.00 1.00-1.10	3 2		51.30	1.00											\vdash
1.10-1.20	3														
1.20-1.30 1.30-1.40	4 5			- -											
1.40-1.50 1.50-1.60	8 13		50.80	 - 1.50											_
1.60-1.70	7														
1.70-1.80 1.80-1.90	9 15														<u> </u>
1.90-2.00 2.00-2.10	10		50.30]					
2.10-2.20	8		30.30												
2.20-2.30 2.30-2.40	8 9			 											-
2.40-2.50 2.50-2.60	11		40.00	-											
2.50-2.60 2.60-2.70	15 20		49.80	— 2.50 - -											_
2.70-2.80	20														
2.80-2.90 2.90-3.00	24 25			_ 											
			49.30	3.00 											_
				<u>-</u> -											
				- - -											\vdash
			48.80	3.50											
				_											
				 											-
			48.30	4.00											-
															\vdash
			47.80	4.50											
				 											-
				<u>-</u> -											-
			47.30	5.00											Щ
Remarks Complete	at 3.00m BGL.	Nacont to WS05										(3	Scale approx)	Logge By	:d
Coordinat	es based on site m	djacent to WS05. easurmens and taken from GIS / Levels	estimated	l from topo su	rvey								1:25	C. By	rne
												ı	Figure I		\neg
													9901-0	8-20.DI	205

Depth Color Colo		Gro	und Investigations Ir www.gii.ie	eland	Ltd	Site Gaelcl	nolaiste	an Ph	iarsaigh	ı, Rathf	arnham	ı			Probe Numb	
Control Cobernet measurements Control Control Cobernet measurements Control Cont	Method Dynamic Pro Fall Height &	obe Heavy DPH 500mm eight 50kg	Cone Dimensions			Client								(Numb	
2000-10 13 5240 000 12 12 12 12 12 12 12 12 12 12 12 12 12					08/2020		er									
10-0-20 12 12 2 2-0-30 12 2 2-0-30 9 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 !	5 1							10 4	.5	50
33-03-04	0.00-0.10	13		52.40	0.00											+
30.04.0 4 4	0.10-0.20															<u> </u>
1.50-0.60 3 51.90 0.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20-0.30 0.30-0.40				- - -											
10.00-180	0.40-0.50 0.50-0.60	2 3		51.90	 											
180-0.90 13 190-1.00 12 100-1.10 10 11-0-1.20 9 12-0-1.30 14 8 1 11-0-1.50 11 1.50-1.60 29 1.80-1.65 50 1.80-1.65 50	0.60-0.70	3														+
100-1-10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.70-0.80 0.80-0.90	11 13			<u>-</u> 											+
1.10-1.20 9 1.20-1.30 14 8 1.40-1.50 29 1.60-1.65 50 50.40 2.00 49.40 3.00 49.40 3.00 48.40 4.00 47.40 5.00	0.90-1.00			51.40	 1.00											
13.01.40 8 140.150 29 150.40 2.00 50.40 2.50 49.90 3.50 49.40 3.00 48.40 4.00 47.40 5.00	1.10-1.20			01.10	- - -											
140-1.50	1.20-1.30 1.30-1.40															
1.60-1.65 50 50 50 50 50 50 50 50 50 50 50 50 50	1.40-1.50	11			- -											+
49.90				50.90	— 1.50 - —											50
49.40																30
49.40 3.00 48.90 3.50 48.90 4.00 47.40 5.00					- -											
48.40				50.40	2.00											+
48.40					- -											\vdash
48.40					 - 											
48.40 4.00 47.40 4.50				49.90	2.50											
48.40 4.00 47.40 4.50					 - 											
48.40 4.00 47.40 4.50					- -											+
48.40 4.00				49.40	3.00											\perp
48.40 4.00																
48.40 4.00					- -											
47.90 4.50				48.90	 											\Box
47.90 4.50					- -											-
47.90 4.50																\perp
47.90 4.50				48 40	- - - 4.00											
47.40 5.00				40.40												
47.40 5.00					- - -											\vdash
47.40 5.00					- 											
				47.90	4.50 - -											
					- -											
					 - _											
Remarks Scale Logged	Domeste			47.40	5.00								1.	Poels	Lacr	<u></u>
Refusal at 1.65m BGL. 50 hammer blows for 50mm penetration. (approx) By Sy Sy Sy Sy Sy Sy Sy Sy Sy	Refusal at	1.65m BGL. er blows for 50mm	penetration.											approx)	By	#U
50 hammer blows for 50mm penetration. Dynamic probe completed adjacent to WS06. Coordinates based on site measurmens and taken from GIS / Levels estimated from topo survey 1:25 C. Byrne	Dynamic p Coordinate	orobe completed ac es based on site m	djacent to WS06. easurmens and taken from GIS / Levels	estimated	from topo su	rvey										/rne
Figure No. 9901-08-20.DP06																

G	Gro	und Investigations Ir www.gii.ie	eland	l Ltd	Site Gaelc	holaiste	an Ph	iarsaigh	ı, Rathf	arnham	l		Probe Numb	
Method Dynamic Pr Fall Height	obe Heavy DPH 500mm eight 50kg	Cone Dimensions		Level (mOD) 52.40	Client								Job Numb 9901-08	
Tidiline W	olgin oong	Location (Observed measurements) 714700.8 E 728291 N	Dates	10/2020	Engine DBFL								Sheet 1/1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3 (3			pth Inc 15 1		24 2	27 3	30
0.00-0.10	6		52.40	0.00										H
0.10-0.20 0.20-0.30	11			_										_
0.30-0.40	11			 - _										
0.40-0.50 0.50-0.60	8 8		51.90	0.50										
0.60-0.70	7			 										
0.70-0.80 0.80-0.90	4 5			-										\vdash
0.90-1.00 1.00-1.10	7 8		51.40	1.00										_
1.10-1.20	11													
1.20-1.30 1.30-1.40	18 18			-										
1.40-1.50 1.50-1.60	13 10		50.90	 1.50										
1.60-1.70	3			<u>-</u>										-
1.70-1.80 1.80-1.90	3 6													-
1.90-2.00 2.00-2.10	5 5		50.40	2.00										
2.10-2.20	6		30.40											
2.20-2.30 2.30-2.40	9 20			 										
2.40-2.50	21		40.00	-										$\left - \right $
2.50-2.60	25		49.90	— 2.50 - -										_
				_										
			49.40	3.00 										\vdash
				-										-
				- - -									ļ	
			48.90	3.50										
			48.40	4.00										$\left - \right $
				 - 										
				- -										
			47.90	4.50										
														\vdash
				_										
			47.40	 5.00										
Remarks Refusal at	t 2.65m BGL.											Scale approx)	Logge By	∌d
50 hamme	er blows for 50mm	penetration. djacent to WS06A. easurmens and taken from GIS / Levels	ooti t	I from to	m									
Coordinat	es pased on site m	easurmens and taken from GIS / Levels	estimated	ı ırom topo su	rvey							1:25 Figure I	C. By	rne
												9901-08		206A

	Gro	und Investigations Ir www.gii.ie	eland	l Ltd	Site Gae	elchol	aiste	an Phi	arsaigh	n, Rathf	arnham	1			Probe Numb	
Method Dynamic Pr Fall Height Hammer W	obe Heavy DPH 500mm eight 50kg	Cone Dimensions		Level (mOD) 52.40	Client	t									Job Numb 9901-0	
		Location (Observed measurements) 714699.1 E 728304.3 N	Dates 27/0	08/2020	Engin DBF										Shee	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3	6					rement		24 2	27 :	30
0.00-0.10	2		52.40	0.00												+
0.10-0.20	3			_		4										\perp
0.20-0.30 0.30-0.40	4															
0.40-0.50 0.50-0.60	3 5		51.90	0.50												
0.60-0.70	8			 - -												+
0.70-0.80 0.80-0.90	8 6			<u>-</u> -												+-
0.90-1.00 1.00-1.10	10 14		51.40	1.00												<u> </u>
1.10-1.20	8			<u> </u>												
1.20-1.30 1.30-1.40	8 7			- -												
1.40-1.50 1.50-1.60	6 7		50.90	 - 1.50												+
1.60-1.70	20					+										+
1.70-1.80 1.80-1.90	7 9															<u> </u>
1.90-2.00 2.00-2.10	15 11		50.40	2.00												
2.10-2.20	18		30.40													
2.20-2.30 2.30-2.40	13 14			 												+
2.40-2.50 2.50-2.60	17		40.00	-		+										+
2.50-2.60 2.60-2.70	20		49.90	— 2.50 - -												<u> </u>
2.70-2.80	27															
				_												
			49.40	3.00 												+
				<u>-</u>												+
				<u>-</u> -												\perp
			48.90	3.50												
																+
			48.40	4.00												+
				- - -												\perp
				<u>-</u> -												
			47.90	4.50												\Box
				 												+
																+
			47.40	5.00												\perp
Remarks Complete	at 2.80m BGL.												(8	Scale approx)	Logg By	ed
Dynamic p Coordinat	orobe completed ac es based on site m	djacent to WS07. easurmens and taken from GIS / Levels	estimated	l from topo su	rvey									1:25	C. By	
														Figure I		,
														9901-0	8-20.D)P07

APPENDIX 6 – Cable Percussion

	Groui	nd In		gations Irel w.gii.ie	land I	_td	Site Gaelcholaiste an Phiarsaigh, Rathfarnham	Borehole Number BH02
Machine : D	Dando 200 Cable Percussion		Diamete Omm to 4	r		Level (mOD) 52.40	Client	Job Number 9901-08-20
			•	ved measurements) 728292.6 N	Dates 29	/08/2020	Engineer DBFL	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Mater
1.00-1.45 1.00	SPT(C) N=18			2,4/3,3,3,9		(1.80)	MADE GROUND: Dark grey slightly sandy gravelly Clay with occasional angular to subrounded cobbles and red brick fragments. Gravel is angular to subrounded fine to coarse.	
2.00	В				50.60	1.80	Firm to stiff dark grey slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles. Gravel is subangular to subrounded fine to coarse.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00-3.36 3.00	SPT(C) 50/210 B			14,10/15,13,22	49.40	3.00	Very stiff dark grey slightly sandy slightly gravelly CLAY with occasional subangular to subrounded cobbles. Gravel is subangular to subrounded fine to coarse.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.00-4.20 4.00	SPT(C) 50/50 B			29,42/50	48.10	4.30	Refusal at 4.30m	Logged
Refusal at 4 Borehole ba	ckfilled upon complet	tion	_	from GIS / Level estim elling from 4.30m to 4	nated from 30m for 1	topo survey hour.	1:50 Figure	C. Byrne

APPENDIX 7 – TRL Probe Records

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

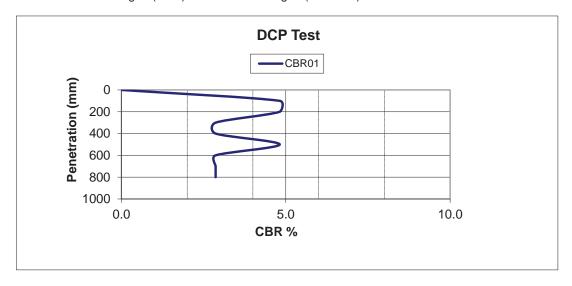
Job Name Gaelcolaiste Phiarsaigh

Job No. 9901-08-20

Client DBFL

Test Type Dynamic Cone Penetration Test

Test Reference CBR01


By C. Byrne

Date 29/08/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	3	33.3	4.8
200	3	33.3	4.8
300	2	50.0	2.9
400	2	50.0	2.9
500	3	33.3	4.8
600	2	50.0	2.9
700	2	50.0	2.9
800	2	50.0	2.9
900	2	50.0	2.9
1000	2	50.0	2.9
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference Kleyn and Van Heerden (60° Cone)

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Job Name Gaelcolaiste Phiarsaigh

9901-08-20

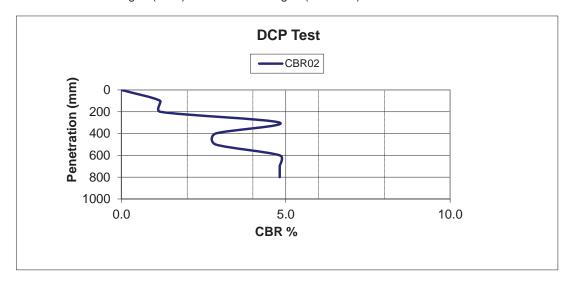
Client DBFL

Job No.

DBFL

Test Type Dynamic Cone Penetration Test

Test Reference CBR02


By C. Byrne

Date 29/08/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	0	100.0	1.2
200	0	100.0	1.2
300	3	33.3	4.8
400	2	50.0	2.9
500	2	50.0	2.9
600	3	33.3	4.8
700	3	33.3	4.8
800	3	33.3	4.8
900	3	33.3	4.8
1000	2	50.0	2.9
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

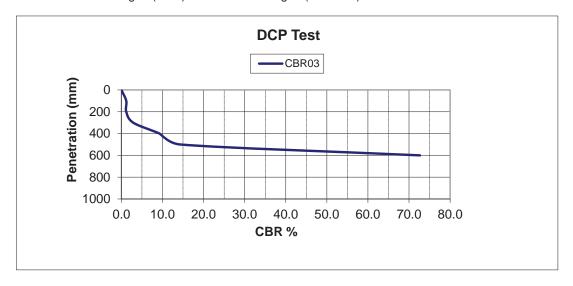
Reference Kleyn and Van Heerden (60° Cone)

Tel: 01 601 5175 / 5176

Email: info@gil.ie Web: www.gii.ie

Job Name Gaelcolaiste Phiarsaigh Test Type Dynamic Cone Penetration Test

 Job No.
 9901-08-20
 Test Reference
 CBR03


 Client
 DBFL
 By
 C. Byrne

Date 29/08/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	0	100.0	1.2
200	1	100.0	1.2
300	2	50.0	2.9
400	5	20.0	9.3
500	7	14.3	14.2
600	25	4.0	72.7
700			
800			
900			
1000			
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

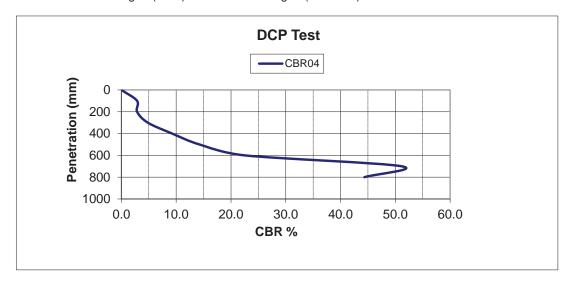
Reference Kleyn and Van Heerden (60° Cone)

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Job Name Gaelcolaiste Phiarsaigh Test Type Dynamic Cone Penetration Test

 Job No.
 9901-08-20
 Test Reference
 CBR04


 Client
 DBFL
 By
 C. Byrne

Date 29/08/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	2	50.0	2.9
200	2	50.0	2.9
300	3	33.3	4.8
400	5	20.0	9.3
500	7	14.3	14.2
600	10	10.0	22.5
700	19	5.3	51.1
800	17	5.9	44.4
900	16	6.3	41.0
1000	11	9.1	25.4
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference Kleyn and Van Heerden (60° Cone)

01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Job Name Gaelcolaiste Phiarsaigh

9901-08-20

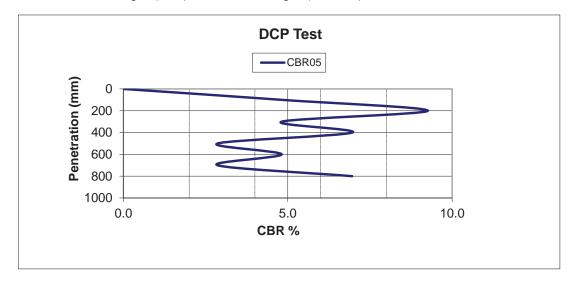
Client

Job No.

DBFL

Test Type Dynamic Cone Penetration Test

Test Reference CBR05


Ву C. Byrne

Date 29/08/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	3	33.3	4.8
200	5	20.0	9.3
300	3	33.3	4.8
400	4	25.0	7.0
500	2	50.0	2.9
600	3	33.3	4.8
700	2	50.0	2.9
800	4	25.0	7.0
900	3	33.3	4.8
1000	2	50.0	2.9
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

Reference Kleyn and Van Heerden (60° Cone)

01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Dynamic Cone Penetration Test

Job Name Gaelcolaiste Phiarsaigh

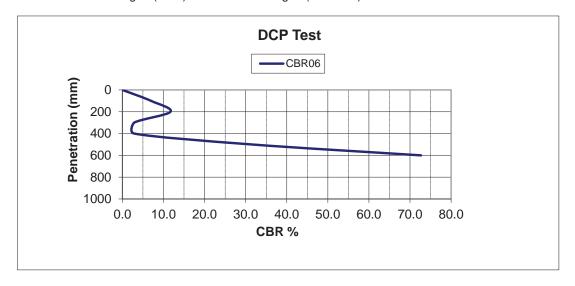
9901-08-20

DBFL Client

Job No.

Test Reference CBR06

By C. Byrne


Test Type

Date 29/08/2020

Initial Depth Ground level

Depth (mm bgl)	No. of Blows per 100mm	Penetration per Blow (mm)	CBR (%)
0	-	-	0.0
100	4	25.0	7.0
200	6	16.7	11.7
300	2	50.0	2.9
400	2	50.0	2.9
500	13	7.7	31.5
600	25	4.0	72.7
700			
800			
900			
1000			
1100	-		
1200	-		
1300	-		
1400	-		
1500	-		

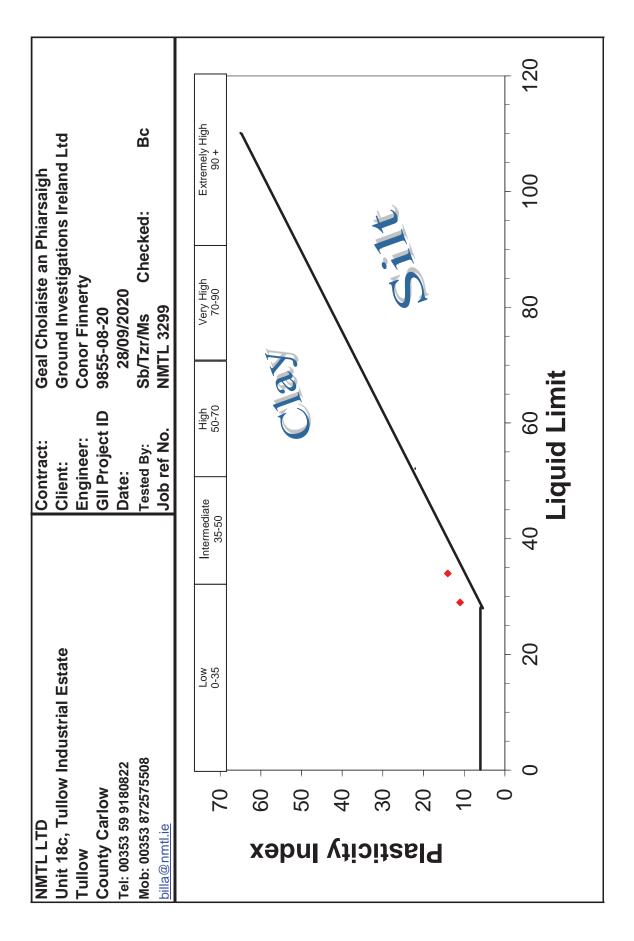
Reference Kleyn and Van Heerden (60° Cone)

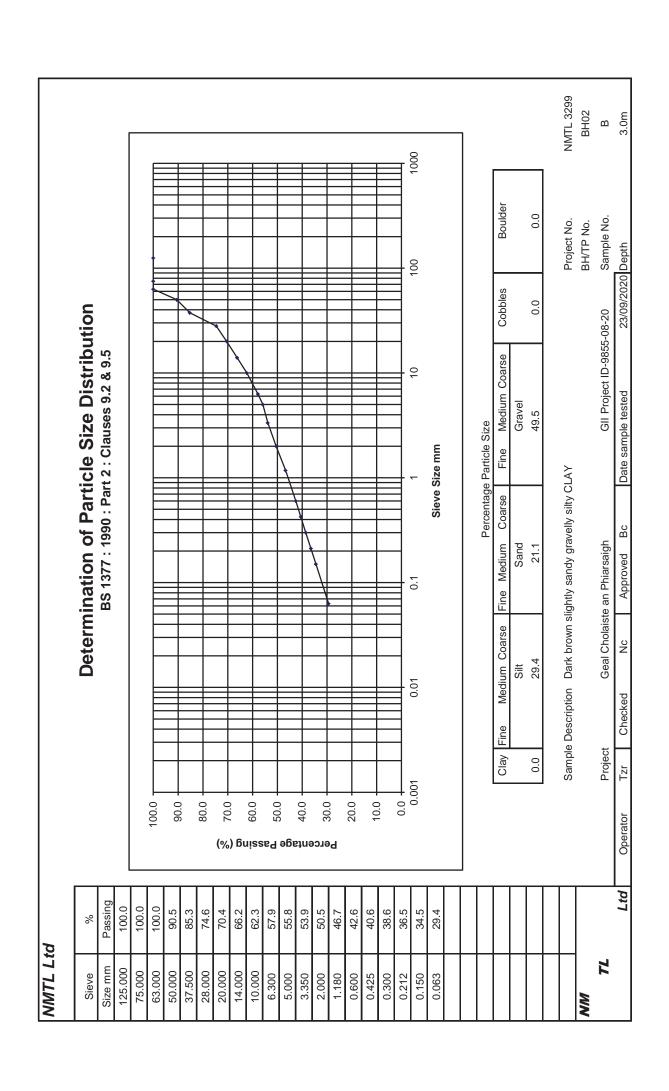
CBR01

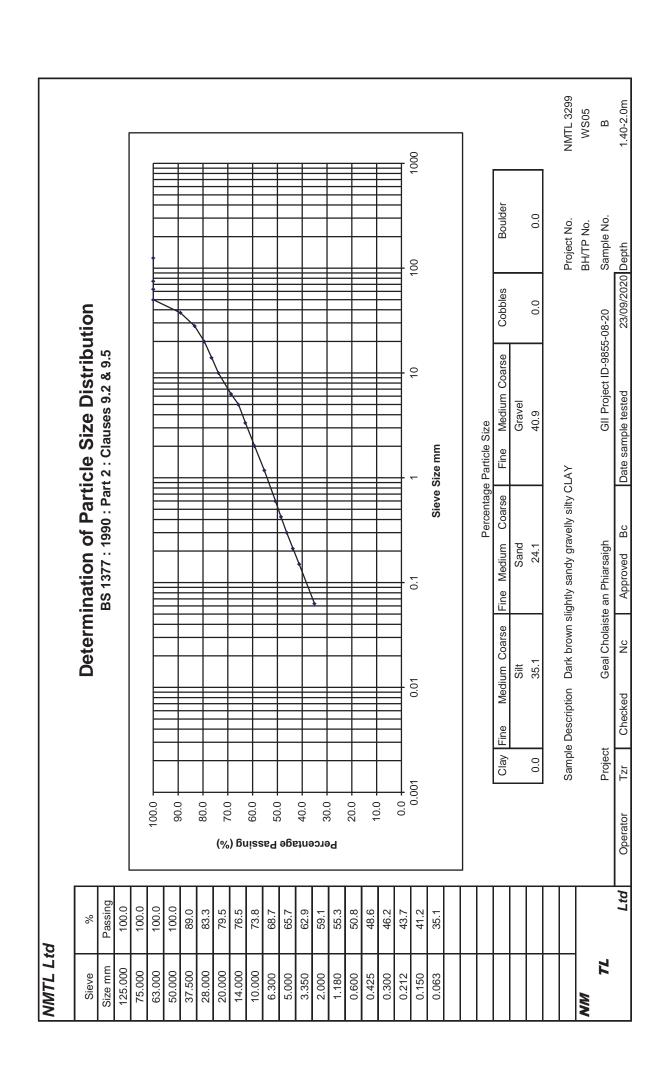
CBR2

CBR3

CBR4


CBR5




APPENDIX 8 – Laboratory Testing

Particle Particle	3.00 3.00 1.40-2.0	Sample No.	Moisture % 12.4 11.9	Particle Density Mg/m3	40.6 48.6 48.6	23 34 % LL	SUMMARY C Index Properties % % % 14 11 11 11 11 11 11 11 11 11 11 11 11	RY OF:	SUMMARY OF TEST RESULTS Index Properties Bulk Cell PL PI Density Presssu % Mg/m3 kPa 20 14 18 11	Cell Presssure kPa	Undrained Triaxial Tests Compressive Strain Stress kPa Failure	Strain at Failure %	Lab Vane kPa	Remarks
		Notes:	O In the desired (activities) because of in the desired and the desired of the de								Job ref No.	NMTL 3299	NMTL 3299 GII Project ID: 9855-08-20	9855-08-20

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland
Catherinestown House

Newcastle Co. Dublin Ireland

Hazelhatch Road

Attention: Mike Sutton

Date: 14th September, 2020

Your reference: 9901-08-20

Our reference : Test Report 20/11850 Batch 1

Location : Gaelcholaiste Phiarsaigh, Rathfarnham

Date samples received : 3rd September, 2020

Status: Final report

Issue: 1

Fourteen samples were received for analysis on 3rd September, 2020 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : Solid

EMT Job No:	20/11850												
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS03	WS03	WS04	WS04	WS05	WS06	WS06	WS07	WS07	BH02A			
Depth	1.20	2.20	0.20	0.70	1.70	0.70	1.60	0.70	1.70	1.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	LOD/LOR	Units	No.
Antimony	2	2	<1	2	2	<1	1	2	2	<1	<1	mg/kg	TM30/PM15
Arsenic#	10.0	10.4	5.5	15.1	8.7	5.5	7.6	10.0	9.6	11.4	<0.5	mg/kg	TM30/PM15
Barium #	46	74	35	95	41	46	107	42	39	57	<1	mg/kg	TM30/PM15
Cadmium#	1.8	1.7	0.6	1.8	2.5	1.3	1.6	2.1	2.0	0.5	<0.1	mg/kg	TM30/PM15
Chromium#	20.4	26.7	40.1	32.8	22.0	22.6	20.5	20.3	19.4	34.2	<0.5	mg/kg	TM30/PM15
Copper#	47	28	13	20	27	15	31	29	26	24	<1	mg/kg	TM30/PM15
Lead*	20	38	14	22	25	11	15	16	17	30	<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum#	2.9	2.6	1.0	3.4	3.0	2.1	2.8	1.8	2.9	1.7	<0.1	mg/kg	TM30/PM15
Nickel [#]	35.7	35.5	17.5	31.2	33.2	22.1	31.4	34.6	34.6	28.2	<0.7	mg/kg	TM30/PM15
Selenium#	2	2	1	2	1	<1	1	<1	<1	2	<1	mg/kg	TM30/PM15
Zinc#	89	90	57	93	90	53	67	79	81	61	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene #	<0.04	0.28	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	0.10	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.12	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	0.96	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	0.17	5.35	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.41	<0.03	mg/kg	TM4/PM8
Anthracene #	0.08	1.95	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.22	<0.04	mg/kg	TM4/PM8
Fluoranthene #	0.56	6.56	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	1.81	<0.03	mg/kg	TM4/PM8
Pyrene #	0.53	4.91	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	1.75	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	0.28	2.33	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.91	<0.06	mg/kg	TM4/PM8
Chrysene #	0.30	2.13	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	1.09	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.70	3.96	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2.31	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.41	2.16	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	1.34	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	0.26	1.31	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.96	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.04	0.23	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.18	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.28	1.36	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	1.13	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	0.22	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.19	<0.04	mg/kg	TM4/PM8
PAH 6 Total#	2.21	15.35	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	7.55	<0.22	mg/kg	TM4/PM8
PAH 17 Total	3.61	34.81	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	12.42	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.50	2.85	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.66	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.20	1.11	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.65	<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	108	109	109	107	106	109	106	102	104	106	<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30	<30	<30	<30	<30	<30	79	<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : Solid

The Normalises Date of Receipt 0309/2020 0309/2	MT Job No:	
Depth COC Not misc Containers VJT	EMT Sample No.	
Coot No / misc Containers	Sample ID	
Containers VJT	Depth	ee attached notes for all
Sample Date 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 01/09/2020 03	COC No / misc	
Sample Type	Containers	
Batich Number Date of Receipt 030932020 030932	Sample Date	
Batich Number Date of Receipt 030932020 030932	Sample Type	
Date of Receipt 030902000000 03090200 030902000000000000000000000000000000000		Mashad
Aliphatics	Date of Receipt	Units Method No.
SCS-C6		
Second	Aliphatics	
Second	5-C6#	mg/kg TM36/PM12
School		
Colo-Cit2*		1
SC12-C16		
SC16-C21		
C21-C35" C7 C7 C7 C7 C7 C7 C7 C		
\$\cdot \cdot \cd		
Total alighatics CS-40		
Color		
C10-C25	·	
\$\color \color \colo		
Aromatics Col. SV Col. SV Col. SV Col. C		
Scener S		99
SEC7-EC8* <0.1\$V <0.1\$V <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		ma/ka TM36/PM12
>EC8-EC10 ** <0.1 **V <0.1 **V* <0.2 **V* <0.1 **V* <0.2 **V* <0.2 **V* <0.2 **V* <0.2 **V* <0.2 **V* <0.2 **V* <0.1 **V* <0		3 3
>EC10-EC12 # <0.2		
SEC12-EC16		
SEC16-EC21		1 1
>EC21-EC35 ** <7		3 3
>EC35-EC40 <7		1 1
Total aliphatics and aromatics (C5-40)		
>EC6-EC10	tal aromatics C5-40	mg/kg тмs/тмзагрмагрм12/рм
>EC10-EC25 <10	al aliphatics and aromatics(C5-40)	mg/kg тмs/тмэвірмвірм12/рм
>EC10-EC25 <10	C6-EC10#	mg/kg TM36/PM12
MTBE	C10-EC25	mg/kg TM5/PM8/PM1
Benzene #		
Benzene #	4	
Toluene #		
Ethylbenzene		
$ m/p$ -Xylene $^{\#}$ $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5 $ $ <5		
m/p-Xylene"		1
o-Xylene #	(ylene *	ug/kg TM36/PM12
PCB 28 # <5 <5 <5 <5 <5 <5 <5 <5 The proof of the proof o	:B 28 #	ug/kg TM17/PM8
PCB 52 # <5 <5 <5 <5 <5 <5 <5 <5 TM	B 52#	ug/kg TM17/PM8
PCB 101 # <5 <5 <5 <5 <5 <5 <5 <5 <5 TM	B 101 #	ug/kg TM17/PM8
PCB 118# <5 <5 <5 <5 <5 <5 <5 <5 <5 TM	B 118#	ug/kg TM17/PM8
PCB 138 [#] <5 <5 <5 <5 <5 <5 <5 <5 <5 The proof of the p	B 138#	ug/kg TM17/PM8
PCB 153 [#] <5 <5 <5 <5 <5 <5 <5 <5 TM	B 153#	ug/kg TM17/PM8
		ug/kg TM17/PM8
Total 7 PCBs# <35 <35 <35 <35 <35 <35 <35 <35 <35 \d35 \d35 \d35	tal 7 PCBs #	ug/kg TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : Solid

EMT Job No:	20/11850												
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS03	WS03	WS04	WS04	WS05	WS06	WS06	WS07	WS07	BH02A			
Depth	1.20	2.20	0.20	0.70	1.70	0.70	1.60	0.70	1.70	1.00	Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	VJT												
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	LOD/LOR	UTIILS	No.
Natural Moisture Content	8.6	15.9	17.0	20.8	12.4	9.2	11.3	12.6	10.9	10.9	<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	7.9	13.7	14.5	17.2	11.1	8.4	10.2	11.2	9.8	9.8	<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	-	-	-	-	-	-	-	-	-	-	<0.0015	g/l	TM38/PM20
Chromium III	20.4	26.7	40.1	32.8	22.0	22.6	20.5	20.3	19.4	34.2	<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	1.21	1.16	0.28	0.62	0.23	0.23	0.31	0.27	0.30	0.87	<0.02	%	TM21/PM24
pH#	8.44	8.03	8.16	8.38	8.38	8.79	8.73	8.64	8.74	8.51	<0.01	pH units	TM73/PM11
Mass of raw test portion	0.098	0.1023	0.1074	0.112	0.1024	0.0984	0.1044	0.1037	0.1026	0.1041		kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09		kg	NONE/PM17

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : Solid

EWI JOD NO:	20/11850				 	 	 	_		
EMT Sample No.	31-33	34-36	37	38						
Sample ID	IT01	IT01	BH02A	WS07						
Depth	0.50	1.50	3.00	1.50				Diversion		
COC No / misc									e attached nations and a	
Containers	VJT	VJT	Т	Т						
Sample Date		01/09/2020								
Sample Type	Soil	Soil	Soil	Soil						, ,
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	03/09/2020	03/09/2020	03/09/2020	03/09/2020						No.
Antimony	1	1	-	-				<1	mg/kg	TM30/PM15
Arsenic#	12.0	12.4	-	-				<0.5	mg/kg	TM30/PM15
Barium#	54	79	-	-				<1	mg/kg	TM30/PM15
Cadmium#	0.9	1.4	-	-				<0.1	mg/kg	TM30/PM15
Chromium # Copper #	43.1 18	40.7 25	-	-				<0.5 <1	mg/kg mg/kg	TM30/PM15 TM30/PM15
Lead #	29	48	-	-				<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	_	-				<0.1	mg/kg	TM30/PM15
Molybdenum#	1.0	2.4	-	-				<0.1	mg/kg	TM30/PM15
Nickel [#]	23.6	28.4	-	-				<0.7	mg/kg	TM30/PM15
Selenium#	<1	1	-	-				<1	mg/kg	TM30/PM15
Zinc#	71	72	-	-				<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene #	<0.04	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	-	-				<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	-	-				<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Phenanthrene # Anthracene #	<0.03 <0.04	0.16 <0.04	-	-				<0.03 <0.04	mg/kg	TM4/PM8 TM4/PM8
Fluoranthene #	<0.03	0.26	-	_				<0.03	mg/kg mg/kg	TM4/PM8
Pyrene #	<0.03	0.25	-	-				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	0.18	-	-				<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	0.16	-	-				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	0.27	-	-				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	0.17	-	-				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	0.10	-	-				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	0.12	-	-				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04	-	-				<0.04	mg/kg	TM4/PM8
PAH 6 Total #	<0.22	0.92	-	-				<0.22	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	<0.64 <0.05	1.67 0.19	-	-				<0.64 <0.05	mg/kg	TM4/PM8 TM4/PM8
Benzo(k)fluoranthene	<0.05	0.19	-	-				<0.05	mg/kg mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	_	_				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	104	101	-	-				<0	%	TM4/PM8
,										
Mineral Oil (C10-C40)	<30	<30	-	-				<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : Solid

LINIT JOD NO.	20/11030									
EMT Sample No.	31-33	34-36	37	38						
Sample ID	IT01	IT01	BH02A	WS07						
Depth	0.50	1.50	3.00	1.50				Please se	e attached r	notos for all
COC No / misc									ations and a	
Containers	V 1.T	V 1 T	Т	Т						
	VJT	VJT								
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				1.00/1.00	Unite	Method
Date of Receipt	03/09/2020	03/09/2020	03/09/2020	03/09/2020				LOD/LOR	Units	No.
TPH CWG										
Aliphatics										
>C5-C6#	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	-	-				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	-	-				<4	mg/kg	TM5/PM8/PM16
>C16-C21 #	<7	<7	-	-				<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	-	-				<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	-	-				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	-	-				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 >C10-C25	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C25 >C25-C35	<10 <10	<10 <10	-	-				<10 <10	mg/kg mg/kg	TM5/PM8/PM16
Aromatics	<10	<10	-	-				<10	Hig/kg	TWS/FWO/FWTO
>C5-EC7 [#]	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	-	-				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 #	<4	<4	-	-				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	-	-				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	<7	<7	-	-				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	-	-				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	<26	<26	-	-				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	<52	<52	-	-				<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC25	<10	<10	-	-				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	-	-				<10	mg/kg	TM5/PM8/PM16
MTDE#	-E	-E							110/1	TM96/DM44
MTBE #	<5 <5	<5 <5	-	-				<5 <5	ug/kg	TM36/PM12 TM36/PM12
Benzene # Toluene #	<5 <5	<5 <5	-	-				<5 <5	ug/kg ug/kg	TM36/PM12
Ethylbenzene #	<5 <5	<5 <5	-	-				<5 <5	ug/kg ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	-	-				<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5	-	-				<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	-	-				<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	-	-				<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	-	-				<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	-	-				<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	-	-				<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	-	-				<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	-	-				<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	-	-				<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : Solid

	1							i		
EMT Sample No.	31-33	34-36	37	38						
Sample ID	IT01	IT01	BH02A	WS07						
Depth	0.50	1.50	3.00	1.50				Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	Т	Т						
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020						
Sample Type		Soil	Soil	Soil						
Batch Number	1	1	1	1						
Date of Receipt				03/09/2020				LOD/LOR	Units	Method No.
Natural Moisture Content	14.7	11.7	-	-				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	12.8	10.5	-	-				<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	-	-				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	-	- 40.7	0.1184	0.0125				<0.0015	g/l	TM38/PM20
Chromium III	43.1	40.7	-	-				<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.78	0.91	-	-				<0.02	%	TM21/PM24
pH#	8.37	8.44	8.45	8.56				<0.01	pH units	TM73/PM11
		-								
Mass of raw test portion	0.1092	0.1008	-	-					kg	NONE/PM17
Mass of dried test portion	0.09	0.09	-	-					kg	NONE/PM17
										}
										1
										-
										<u> </u>

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report: CEN 10:1 1 Batch

EMT Job No:	20/11850										_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30			
Sample ID	WS03	WS03	WS04	WS04	WS05	WS06	WS06	WS07	WS07	BH02A			
Depth	1.20	2.20	0.20	0.70	1.70	0.70	1.60	0.70	1.70	1.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Madead
Date of Receipt	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	LOD/LOR	Units	Method No.
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	mg/kg	TM30/PM17
Dissolved Arsenic #	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0029	<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.029	<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.009	0.005	0.004	<0.003	0.011	<0.003	0.004	<0.003	<0.003	0.012	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.009	0.005	0.004	<0.03	0.11	<0.03	0.004	<0.03	<0.03	0.12	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.022	0.024	0.002	0.011	0.012	0.012	0.018	0.009	0.015	0.008	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.22	0.24	<0.02	0.11	0.12	0.12	0.18	0.09	0.15	0.08	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	0.004	<0.003	0.004	<0.003	<0.003	<0.003	0.003	<0.003	0.004	<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	0.04	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	0.04	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	0.4	0.5	<0.3	<0.3	<0.3	0.4	0.4	0.3	0.4	<0.3	mg/l	TM173/PM0
Fluoride	<3	4	5	<3	<3	<3	4	4	<3	4	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	77.4	26.0	0.6	1.6	4.7	2.2	1.5	0.5	1.4	4.1	<0.5	mg/l	TM38/PM0
Sulphate as SO4#	774	260	6	16	47	22	15	<5	14	41	<5	mg/kg	TM38/PM0
Chloride #	13.2	33.4	0.7	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.3	<0.3	mg/l	TM38/PM0
Chloride #	132	334	7	<3	<3	<3	<3	<3	<3	3	<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	3	4	3	<2	<2	<2	2	<2	3	<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	30	40	30	<20	<20	<20	<20	<20	30	<20	mg/kg	TM60/PM0
pН	8.08	7.93	8.12	8.10	8.21	8.48	8.39	8.32	8.39	7.77	<0.01	pH units	TM73/PM0
Total Dissolved Solids #	194	174	71	52	66	<35	43	40	48	59	<35	mg/l	TM20/PM0
Total Dissolved Solids#	1941	1740	710	520	660	<350	430	400	480	590	<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report: CEN 10:1 1 Batch

EMT Sample No.	31-33	34-36										
Sample ID	IT01	IT01										
Depth	0.50	1.50								Dlooso so	e attached n	otoc for all
COC No / misc											e attached nations and ac	
Containers	VJT	VJT										
Sample Date												
-												
Sample Type	Soil	Soil										
Batch Number	1	1								LOD/LOR	Units	Method No.
Date of Receipt												
Dissolved Antimony#	<0.002	0.003								<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	0.03								<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025								<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025								<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.007	0.006								<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.07	0.06								<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005								<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005								<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015								<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015								<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007								<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07								<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005								<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05								<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.010	0.009								<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.10	0.09								<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002								<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02								<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003								<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03								<0.03	mg/kg	TM30/PM17
Dissolved Zinc #	0.004	0.003								<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	0.04	0.03								<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001								<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001								<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01								<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1								<0.1	mg/kg	TM26/PM0
Fluoride	0.6	0.6								<0.3	mg/l	TM173/PM0
Fluoride	6	6								<3	mg/kg	TM173/PM0
. ===											99	
Sulphate as SO4 #	13.9	8.2								<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	139	82								<5	mg/kg	TM38/PM0
Chloride #	3.9	2.1								<0.3	mg/l	TM38/PM0
Chloride#	39	21								<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	5	5								<2	mg/l	TM60/PM0
Dissolved Organic Carbon	50	50								<20	mg/kg	TM60/PM0
pH	8.06	8.15								<0.01	pH units	TM73/PM0
Total Dissolved Solids #	161	129								<35	mg/l	TM20/PM0
Total Dissolved Solids **	1609	129								<350		TM20/PM0
Total Dissolved Solids	1009	1290								<350	mg/kg	1 IVIZU/FIVIU
		<u> </u>		<u> </u>			<u> </u>					

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton EMT Job No: 20/11850

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30
Sample ID	WS03	WS03	WS04	WS04	WS05	WS06	WS06	WS07	WS07	BH02A
Depth	1.20	2.20	0.20	0.70	1.70	0.70	1.60	0.70	1.70	1.00
COC No / misc										
Containers	VJT									
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020
Sample Type	Soil									
Batch Number	1	1	1	1	1	1	1	1	1	1

Please see attached notes for all abbreviations and acronyms

Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT						
Sample Date	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020	01/09/2020						
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1	1	1	1	1	1		Stable Non-				Method
Date of Receipt	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020	Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis																
Total Organic Carbon #	1.21	1.16	0.28	0.62	0.23	0.23	0.31	0.27	0.30	0.87	3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 ^{sv}	6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30	<30	<30	79	500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	2.21	15.35	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	7.55	-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	3.61	34.81	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	12.42	100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate																
Arsenic #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.029	0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.09	0.05	0.04	<0.03	0.11	<0.03	0.04	<0.03	<0.03	0.12	20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium *	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	2	50	100	<0.07	mg/kg	TM30/PM17
Mercury **	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum "	0.22	0.24	<0.02	0.11	0.12	0.12	0.18	0.09	0.15	0.08	0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel **	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead "	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc #	<0.03	0.04	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	0.04	4	50	200	<0.03	mg/kg	TM30/PM17 TM20/PM0
Total Dissolved Solids Dissolved Organic Carbon	1941 <20	1740 30	710 40	520 30	660 <20	<350 <20	430 <20	400 <20	480 <20	590 30	4000 500	60000 800	100000	<350 <20	mg/kg mg/kg	TM60/PM0
Dissolved Organic Carbon	V20	30	40	30	V20	\2 0	\20	\20	V20	30	300	800	1000	V20	ilig/kg	TIVIOO/FIVIO
Mass of raw test portion	0.098	0.1023	0.1074	0.112	0.1024	0.0984	0.1044	0.1037	0.1026	0.1041	-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	91.6	88.4	83.6	80.6	88.0	91.5	85.9	86.6	87.4	86.3	-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.892	0.888	0.882	0.878	0.888	0.892	0.885	0.886	0.887	0.886	-	-	-		1	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	-	-	-		1	NONE/PM17
pH "	8.44	8.03	8.16	8.38	8.38	8.79	8.73	8.64	8.74	8.51	-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	4	5	<3	<3	<3	4	4	<3	4	-	-	-	<3	mg/kg	TM173/PM0
		000		40			45	_			4000		50000	_		T1400/D140
Sulphate as SO4 "	774 132	260 334	6 7	16	47 <3	22 <3	15 <3	<5 <3	14 <3	41 3	1000 800	20000 15000	50000 25000	<5 <3	mg/kg	TM38/PM0 TM38/PM0
Chloride #	132	334	,	<3	<0	<3	<3	<3	<0	3	800	15000	25000	<0	mg/kg	TIVISO/FIVIU
				1												

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton
EMT Job No: 20/11850

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

LINIT GOD NO.	20/11030					
EMT Sample No.	31-33	34-36				
Sample ID	IT01	IT01				
Depth	0.50	1.50				
COC No / misc						
Containers	VJT	VJT				
Sample Date	01/09/2020	01/09/2020				
Sample Type	Soil	Soil				
Batch Number	1	1				

Please see attached notes for all

Бериг											e attached n ations and a	
COC No / misc												,
Containers	VJT	VJT										
Sample Date	01/09/2020	01/09/2020										
Sample Type	Soil	Soil										
Batch Number	1	1					Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	03/09/2020	03/09/2020					nioit	reactive	T IOLUN GOGO	200 2011	OTILO	No.
Solid Waste Analysis												
Total Organic Carbon #	0.78	0.91					3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025					6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	< 0.035	< 0.035					1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30					500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	0.92					-	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	1.67					100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate												
Arsenic #	<0.025	<0.025					0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.07	0.06					20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005					0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015					0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper #	<0.07	<0.07					2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001					0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.10	0.09					0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02					0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead "	<0.05	<0.05					0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	0.03					0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	< 0.03	< 0.03					0.1	0.5	7	< 0.03	mg/kg	TM30/PM17
Zinc #	0.04	0.03					4	50	200	< 0.03	mg/kg	TM30/PM17
Total Dissolved Solids "	1609	1290					4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	50	50					500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1092	0.1008					-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	82.2	89.0					-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.88	0.889					-	-	-		1	NONE/PM17
Eluate Volume	0.8	0.8					-	-	-		I	NONE/PM17
рН #	8.37	8.44					-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1					1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	6	6					-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	139	82					1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	39	21					800	15000	25000	<3	mg/kg	TM38/PM0
Official									20000	10	99	

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton

Contact		Wilke Sutto			
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
20/11850	1	WS03	1.20	1-3	No interpretation possible
20/11850	1	WS03	2.20	4-6	PAH's
20/11850	1	WS04	0.20	7-9	No interpretation possible
20/11850	1	WS04	0.70	10-12	No interpretation possible
20/11850	1	WS05	1.70	13-15	No interpretation possible
20/11850	1	WS06	0.70	16-18	No interpretation possible
20/11850	1	WS06	1.60	19-21	No interpretation possible
20/11850	1	WS07	0.70	22-24	No interpretation possible
20/11850	1	WS07	1.70	25-27	No interpretation possible
20/11850	1	BH02A	1.00	28-30	PAH's, Possible tarmac/bitumen & Trace of lubricating oil
20/11850	1	IT01	0.50	31-33	No interpretation possible
20/11850	1	IT01	1.50	34-36	No interpretation possible

Client Name: Ground Investigations Ireland

Reference: 20/08/9901

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/11850	1	WS03	1.20	2	07/09/2020	General Description (Bulk Analysis)	Soil/Stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD
					07/09/2020	Asbestos Type	NAD
					07/09/2020	Asbestos Level Screen	NAD
20/11850	1	WS03	2.20	5	07/09/2020	General Description (Bulk Analysis)	Soil/Stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD
					07/09/2020	Asbestos Type	NAD
					07/09/2020	Asbestos Level Screen	NAD
20/11850	1	WS04	0.20	8	07/09/2020	General Description (Bulk Analysis)	Soil/Stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD
					07/09/2020	Asbestos Type	NAD
					07/09/2020	Asbestos Level Screen	NAD
20/11850	1	WS04	0.70	11	07/09/2020	General Description (Bulk Analysis)	soil.stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD
					07/09/2020	Asbestos Type	NAD
					07/09/2020	Asbestos Level Screen	NAD
20/11850	1	WS05	1.70	14	07/09/2020	General Description (Bulk Analysis)	soil.stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD
					07/09/2020	Asbestos Type	NAD
					07/09/2020	Asbestos Level Screen	NAD
20/11850	1	WS06	0.70	17	07/09/2020	General Description (Bulk Analysis)	soil.stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD
					07/09/2020	Asbestos Type	NAD
					07/09/2020	Asbestos Level Screen	NAD
20/11850	1	WS06	1.60	20	07/09/2020	General Description (Bulk Analysis)	soil.stones
					07/09/2020	Asbestos Fibres	NAD
					07/09/2020	Asbestos ACM	NAD

Client Name: Ground Investigations Ireland

Reference: 20/08/9901

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton

No. Sample ID Depth Sample No. Al	Analysis	Result NAD NAD soil.stones NAD NAD
20/11850 1 WS07 0.70 23 07/ 07/	//09/2020 Asbestos Level Screen //09/2020 General Description (Bulk Analysis) //09/2020 Asbestos Fibres //09/2020 Asbestos ACM //09/2020 Asbestos Type	NAD soil.stones NAD
20/11850 1 WS07 0.70 23 07/ 07/	//09/2020 Asbestos Level Screen //09/2020 General Description (Bulk Analysis) //09/2020 Asbestos Fibres //09/2020 Asbestos ACM //09/2020 Asbestos Type	NAD soil.stones NAD
20/11850 1 WS07 0.70 23 07/ 07/	7/09/2020 General Description (Bulk Analysis) 7/09/2020 Asbestos Fibres 7/09/2020 Asbestos ACM 7/09/2020 Asbestos Type	soil.stones NAD
07/	//09/2020 Asbestos Fibres //09/2020 Asbestos ACM //09/2020 Asbestos Type	NAD
07/	//09/2020 Asbestos Fibres //09/2020 Asbestos ACM //09/2020 Asbestos Type	NAD
07/	7/09/2020 Asbestos ACM 7/09/2020 Asbestos Type	
	7/09/2020 Asbestos Type	NAD
0.74	**	
07/	7/09/2020 Asbestos Level Screen	NAD
07/		NAD
20/11850 1 WS07 1.70 26 07/	7/09/2020 General Description (Bulk Analysis)	soil.stones
07/	7/09/2020 Asbestos Fibres	NAD
07/	7/09/2020 Asbestos ACM	NAD
07/	7/09/2020 Asbestos Type	NAD
07/	7/09/2020 Asbestos Level Screen	NAD
20/11850 1 BH02A 1.00 29 07/	7/09/2020 General Description (Bulk Analysis)	soil-stones
	//09/2020 Asbestos Fibres	NAD
	//09/2020 Asbestos ACM	NAD
	//09/2020 Asbestos Type	NAD NAD
07/	7/09/2020 Asbestos Level Screen	NAD
	(709/2020 General Description (Bulk Analysis)	soil-stones
07/	7/09/2020 Asbestos Fibres	NAD
07/	7/09/2020 Asbestos ACM	NAD
07/	7/09/2020 Asbestos Type	NAD
07/	7/09/2020 Asbestos Level Screen	NAD
20/11850 1 IT01 1.50 35 07/	7/09/2020 General Description (Bulk Analysis)	soil-stones
07/	7/09/2020 Asbestos Fibres	NAD
07/	7/09/2020 Asbestos ACM	NAD
07/	7/09/2020 Asbestos Type	NAD
07/	7/09/2020 Asbestos Level Screen	NAD

Client Name: Ground Investigations Ireland

Reference: 9901-08-20

Location: Gaelcholaiste Phiarsaigh, Rathfarnham

Contact: Mike Sutton

Reason												
Analysis	No deviating sample report results for job 20/11850											
EMT Sample No.												
Depth												
Sample ID												
Batch												
EMT Job No.												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/11850

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.:

20/11850

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS Ref No. 1225) accredited - UK. SA ISO17025 (SANAS Ref No. 10729) accredited - South Africa B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. NAD None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. - Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample Client Sample Tip Islank Sample OC Outside Calibration Range		
B Indicates analyte found in associated method blank. DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see "Note" on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. - Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS ACC Sample LB Blank Sample N Client Sample Trip Blank Sample	#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
DR Dilution required. M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usuality refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS ACC Sample LB Blank Sample N Cilent Sample Trip Blank Sample	SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
M MCERTS accredited. NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TiCs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample	В	Indicates analyte found in associated method blank.
NA Not applicable NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LODLOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample	DR	Dilution required.
NAD No Asbestos Detected. ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample Tip Blank Sample Trip Blank Sample	М	MCERTS accredited.
ND None Detected (usually refers to VOC and/SVOC TICs). NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. • Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample Trip Blank Sample Trip Blank Sample	NA	Not applicable
NDP No Determination Possible SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample	NAD	No Asbestos Detected.
SS Calibrated against a single substance SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. • Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Tip Blank Sample	ND	None Detected (usually refers to VOC and/SVOC TICs).
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect. W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. • Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	NDP	No Determination Possible
W Results expressed on as received basis. + AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. * Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	SS	Calibrated against a single substance
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page. >> Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. • Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited. Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	W	Results expressed on as received basis.
higher, this result is not accredited. Analysis subcontracted to an Element Materials Technology approved laboratory. AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
AD Samples are dried at 35°C ±5°C CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample Trip Blank Sample	>>	
CO Suspected carry over LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	*	Analysis subcontracted to an Element Materials Technology approved laboratory.
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	AD	Samples are dried at 35°C ±5°C
ME Matrix Effect NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	СО	Suspected carry over
NFD No Fibres Detected BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
BS AQC Sample LB Blank Sample N Client Sample TB Trip Blank Sample	ME	Matrix Effect
LB Blank Sample N Client Sample TB Trip Blank Sample	NFD	No Fibres Detected
N Client Sample TB Trip Blank Sample	BS	AQC Sample
TB Trip Blank Sample	LB	Blank Sample
	N	Client Sample
OC Outside Calibration Range	ТВ	Trip Blank Sample
	ОС	Outside Calibration Range

EMT Job No: 20/11850

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PMO	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5.2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5.2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5.2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PMO	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10684:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with delonised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

18 of 20

EMT Job No: 20/11850

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2.2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl)	PMO	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl)	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soll for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 2znd Edition, ASTM D 7573, and USEPA 415.1.	PMO	No preparation is required.			AR	Yes

EMT Job No: 20/11850

APPENDIX 9 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie

Web: www.gii.ie

GROUNDWATER MONITORING

Geal Cholaiste An Phiarsaigh

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
WS06A	19/10/2020	18.10	1.58	