Gaelcoláiste an Phiarsaigh, Rathfarnham

Infrastructure Design Report

190187-DBFL-XX-XX-RP-C-0001

May 2022

CONSULTING ENGINEERS

Project Title:	Gaelcoláiste an Phiarsaigh, Rathfarnham		
Document Title:	Infrastructure Design Report		
File Ref:	190187-DBFL-XX-XX-RP-C-0001		
Status:	P1 - Information	Rev:	1
	A - Accepted		-

Rev.	Date	Description	Prepared	Reviewed	Approved
1	16/05/22	First Issue	Aisling Noonan	Emma Daly	

Disclaimer

This document has been prepared for the exclusive use of our Client and unless otherwise agreed in writing with DBFL Consulting Engineers no other party may use, make use of or rely on the contents of this document. The document has been compiled using the resources agreed with the Client and in accordance with the agreed scope of work. DBFL Consulting Engineers accepts no responsibility or liability for any use that is made of this document other than for the purposes for which it was originally commissioned and prepared, including by any third party or use by others of opinions or data contained in this document. DBFL Consulting Engineers accepts no information supplied by others and contained within this report. It is expressly stated that no independent verification of any documents or information supplied by others for this document has been made. DBFL Consulting Engineers has used reasonable skill, care and diligence in compiling this document and no warranty is provided as to the report's accuracy.

Copyright

The contents and format of this report are subject to copyright owned by DBFL Consulting Engineers unless that copyright has been legally assigned by us to another party or is used by DBFL Consulting Engineers under licence. This report may not be copied or used for any purpose other than the intended purpose.

190187-DBFL-XX-XX-RP-C-0001 May 2022

Contents

1	Inti	roduction	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Location	1
	1.4	Topography	2
	1.5	Existing Ground Conditions	2
2	Site	e Access and Road Layout	4
	2.1	Site Access	4
	2.2	Site Layout	4
	2.3	Vehicle Tracking	4
	2.4	Paving Design Standards	4
	2.5	Traffic and Transportation	5
3	Sur	rface Water Drainage	6
	3.1	Existing Surface Water Drainage	6
	3.2	Basis of Design	7
	3.2	General Description of Surface Water Design	7
	3.2	2.2 Compliance with Surface Water Policy	7
	3.2	2.3 Design Standards	8
	3.2	2.4 SuDS	9
	3.2	Proposed Runoff Coefficients and Factored Impermeable Areas	9
	3.2	2.6 Attenuation Calculation1	0
	3.2	1.7 Interception Volume	1
	3.3	Flood Risk1	1
	3.4	Surface Water Quality Impact1	1

4	Fοι	ul Drainage13
	4.1	Existing Foul Drainage
	4.2	Pre-Connection Feedback from Irish Water14
	4.3	Design Strategy 14
	4.4	Design Calculations
	4.5	Foul Drainage – Environmental Impacts15
5	Wa	ter Supply and Distribution16
	5.1	Existing Public Watermains
	5.2	Proposed Watermain Layout16
	5.3	Pre-Connection Feedback from Irish Water17
	5.4	Hydrants
	5.5	Materials
Ap	openo	dix A: Attenuation CalculationR
Ap	openo	dix B: Correspondence with Irish WaterS

Figures

Figure 1-1: Site Location (Site Boundary Indicative Only)	2
Figure 3-1: Extract from Irish Water's Network Plan	6
Figure 4-1: Extract from Irish Water's Network Plan	13
Figure 5-1: Existing Watermain Layout	16

Tables

Table 3-1: Climate Change Factor to be Applied to Drainage Design	9
Table 3-2: Surface Water Attenuation Storage and Discharge Limits	10

190187-DBFL-XX-XX-RP-C-0001 May 2022

1 Introduction

1.1 Background

DBFL have been instructed to prepare an Infrastructure Design Report to accompany a planning application for the proposed alteration and extension works at Gaelcoláiste an Phiarsaigh, Rathfarnham, Dublin 14. The project involves the refurbishment of the existing buildings, the construction of a new link building and site works on the grounds of Gaelcoláiste an Phiarsaigh.

1.2 Objectives

This report addresses the development's main infrastructure elements, including the following:

- Site access and road layout,
- Surface water drainage strategy and servicing,
- Flood risk,
- Foul drainage strategy and servicing,
- Water supply and servicing.

1.3 Location

The subject site is located to the west of Grange Road, north of Convent Lane, and south of Dispensary Lane and Loreto Abbey. The site location is shown in Figure 1.1 below. The site is currently occupied by the existing school, Gaelcoláiste an Phiarsaigh and its associated facilities.

Figure 1-1: Site Location (Site Boundary Indicative Only)

1.4 Topography

A topographical survey of the site was carried out and is shown in the background of the Proposed Road Layout Plan and Site Services Plans (Refer to 190187-DBFL-RD-SP-DR-C-1211 and 190187-DBFL-CS-SP-DR-C-1311/1312).

The site is generally flat with a gentle slope from the south (Convent Lane) to the north (Dispensary Lane).

The existing surface gradients across the site have been a key factor with regard to the surface water and foul drainage design.

1.5 Existing Ground Conditions

Preliminary ground investigations were carried out by Ground Investigations Ireland (GII) in October 2020 (Refer to GII's Site Investigation Report appended).

A layer of sandy gravelly topsoil was encountered to a maximum depth of 300 mm towards the northeast of the site, with a sandy gravelly made soil below, occasionally consisting of cobbles red

brick, concrete fragments, and glass fragments. Other areas consisted of similar made soil from surface level. Cohesive deposits comprising of sandy gravelly CLAY with occasional cobbles and boulders were encountered beneath the Made Ground.

Infiltration tests were carried out at three locations (refer Site Investigation Report appended). Low infiltration rate of f=4.09 x 10-6 m/s was calculated for the soakaway location IT01 while infiltration was not recorded at the remaining test locations indicating low permeability soils close to all proposed attenuation tanks. Taking a conservative approach, infiltration has not been allowed for in the design although an element of infiltration would still be possible (i.e. ground is not impermeable).

Groundwater was not observed in the vicinity of the proposed attenuation tanks.

2 Site Access and Road Layout

2.1 Site Access

There are currently two vehicular entrances to the school grounds, one from Grange Road and the other from Dispensary Lane.

A separate vehicle entrance and exit has been proposed off Dispensary Lane. This allows for a one-way operating system with a set down area for vehicles dropping/collecting pupils. Dispensary Lane has a posted speed limit of 30 km/hour. The site entrance complies with minimum visibility splays as required by DMURS (Y Distance = 24m, X Distance = 2.4m).

Access to and from the historical gates on Grange Road at the western side of the school grounds is to be closed off. This will contribute to a safer traffic management system through the grounds as there will be reduced cross movements and conflict.

A separate staff parking area has been provided to the east of the site, at the back of the school.

Good accessibility to and from the school grounds has been proposed with footpaths and raised crossings provided throughout the grounds.

2.2 Site Layout

DMURS Street Design guidelines are incorporated in the site's road layout. Refer to Drawing No. 190187-DBFL-RD-SP-DR-C-1211 for Roads Layout drawing.

2.3 Vehicle Tracking

The proposed site layout has been tracked (using AutoTrack software) to demonstrate that large vehicles such as fire tender and refuse vehicles can access and circulate around the site. Refer to Drawing No. 190187-DBFL-RD-SP-DR-C-1211.

2.4 Paving Design Standards

Pavement design at site access points and local streets within the development are to be designed in accordance with the Design Manual for Urban Roads and Streets (DMURS) and Local Authority requirements. Actual CBR (California Bearing Ratio) values and ground conditions are to be confirmed by site specific investigations prior to construction, where required.

2.5 Traffic and Transportation

A separate Traffic and Transport Assessment has been prepared as part of this planning application (Refer to DBFL Report 190187-DBFL-TR-XX-RP-C-001).

3 Surface Water Drainage

3.1 Existing Surface Water Drainage

As noted in Section 1.4, the site is relatively flat with a gentle slope falling from Convent Lane, south of the site, to Dispensary Road, north of the site.

An existing 525/600mm diameter public surface water drain is located to the north of the site along Dispensary Lane (refer to Figure 3.1 below). Existing surface water drainage networks within the site currently drain to this surface water infrastructure.

Figure 3-1: Extract from Irish Water's Network Plan.

3.2 Basis of Design

3.2.1 General Description of Surface Water Design

An overall surface water drainage strategy has been developed by DBFL Consulting Engineers for the development site. Refer to DBFL Drawing 190187-DBFL-CS-SP-DR-C-1312 Surface Water Drainage Layout.

Surface water runoff from the development will be attenuated to greenfield runoff rates (Qbar) in accordance with the Greater Dublin Strategic Drainage Study (GDSDS) before discharging to the existing drainage network on Dispensary Lane.

Surface water discharge rates from the proposed surface water drainage network will be controlled by a vortex flow control device (Hydrobrake or equivalent) and associated underground attenuation tanks (Stormtech Chambers or equivalent). Surface water discharge will also pass via a full retention fuel / oil separator (sized in accordance with permitted discharge rate from the site).

Surface water runoff from the new parking to the east of the school will be captured by permeable paving prior to being routed to the piped surface water drainage network.

Surface water runoff from the site's internal street network will be directed to the proposed pipe network (via tree pits or other SUDS features where practicable -with overflows to conventional road gullies).

3.2.2 Compliance with Surface Water Policy

The site's surface water management infrastructure has been designed in accordance with the Greater Dublin Strategic Drainage Study (GDSDS).

The GDSDS (Vol. 2, Chapter 6.3.4) requires that the following design criteria are applied to all sites:

• Criterion 1:

River Water Quality Protection – Satisfied by providing interception storage and treatment of surface water run-off by SUDS features such as permeable paving, tree pits, underground attenuation tanks and full retention fuel / oil separators at surface water discharge points.

• Criterion 2:

River Regime Protection – Satisfied by attenuating surface water run-off in association with flow control devices prior to discharge off site at greenfield runoff rate. Site critical duration storm used to assess attenuation volume.

• Criterion 3:

Level of Service (Flooding) for the Site – Satisfied by reviewing available flood hazard information (e.g. Eastern CFRAM Study) relating to the sites proximity to fluvial flood plains (up to 1 in 100-year flood event).

Also refer to DBFL Report No. 190187-DBFL-XX-XX-RP-C-002 (Site Specific Flood Risk Assessment).

• Criterion 4:

River Flood Protection – Satisfied by attenuating surface water discharge to greenfield runoff rates, addressing pluvial flood risk associated with the 1 in 100 year storm and avoiding development in flood plains.

3.2.3 Design Standards

Proposed surface water drains have been designed in accordance with the Greater Dublin Strategic Drainage Study (GDSDS), the Department of the Environment's Recommendations for Site Development Works for Housing Areas, the Department of the Environment's Building Regulations "Technical Guidance Document Part H Drainage and Waste Water Disposal" and BS EN 752: 2008 Drain and Sewer Systems Outside Buildings.

Design Criteria:

 Return period for pipe work design 	5 years
Return period for attenuation design	100 years
• Soil Type	2
Allowable Outflow	2 l/sec/ha
• Time of entry	4 minutes
• M5 - 60	18.4 mm
• Ratio "r"	0.276
• Pipe Friction (Ks)	0.6 mm
Minimum Velocity (based on pipe flowing full)	1.0 m/s
• Rainfall Depth Factored for Climate Change (as per GDSDS)	20%

(in accordance with GDSDS Volume 2, Chapter 6, Table 3.1 – see below)

Table 3-1:	Climate	Change	Factor to	be Appli	ied to	Drainage	Design

Climate Change Category	Characteristics
River flows	20% increase in flows for all return periods up to 100 years
Sea level	400+mm rise (see Climate Change policy document for sea levels as a function of return period)
Rainfall	10% increase in depth (factor all intensities by 1.1)
	Modify time series rainfall in accordance with the GDSDS climate change policy document

3.2.4 SuDS

The following methodologies are being implemented as part of the SuDS treatment train approach:

- Permeable paving in parking spaces / in curtilage areas.
- Where practicable, road gullies discharge to tree pits (with high level overflow to the piped surface water network)
- Attenuation of the 1 in 30 year return period storms in underground attenuation chambers (Stormtech) with the difference between the 1 in 100 year event and the 1 in 30 year event is being attenuated above ground in shallow basins. Note: Our calculation has not allowed for any infiltration when calculating the attenuation volume.
- Installation of vortex flow control devices (Hydrobrake or equivalent), limiting surface water discharge from the site to XX l/sec/ha.

3.2.5 Proposed Runoff Coefficients and Factored Impermeable Areas

Noted below are the proposed reduction factors for the proposed development.

Proposed Runoff Coefficients and Factored Impermeable Areas are noted below in Table 3.2.

- Impermeable Areas Drained to Conventional Gullies- Runoff Coefficient 0.95
- Impermeable Roads Drained to Road Gullies via Tree pits Runoff Coefficient 0.80

Typically, road gullies discharge to tree pits (with high level overflow to the piped surface water network). Also takes account of run-off stored within the micro and macro texture of the surfacing (i.e. runoff not collected by piped network).

Permeable Paved Areas Draining via SUDS – Runoff Coefficient 0.5

Reduction of velocity as the aggregate/filter material used in the SuDS feature (permeable paving) slows the run-off at source ultimately reduce the peak inflow for attenuation calculations.

• Soft Landscaped / Grassed Areas – Runoff Coefficient 0.10

Grassed / Landscaped areas slows the run-off at source ultimately reduce the peak inflow for attenuation calculations.

3.2.6 Attenuation Calculation

Attenuation volumes have been calculated based on allowable outflow / greenfield runoff rate of 2 l/sec/Ha.

Run-off from the proposed development will be controlled / attenuated using vortex type flow control devices (Hydrobrake or equivalent).

Due to the topography and site layout, it is proposed that the site be divided into 4 No. catchments, each containing an attenuated storage system.

The resultant storage system, discharge limits and storage volumes for each catchment are detailed in Table 3.2 below.

Catchment	Catchment Area (Total)	Impermeable Catchment Area (Total)	Allowable Outflow (Max.)	Storage Volume Required (100 Yr.)	Storage volume provided (30Yr. Below Ground)
A	0.549 Ha	0.412 Ha	2 l/s	297.2 m ³	320.9 m ³
В	0.125 Ha	0.094 Ha	2 l/s	39.1 m ³	50 m ³
С	0.051 Ha	0.038 Ha	2 l/s	9.4 m ³	9.9 m ³
D	0.117 Ha	0.088 Ha	2 l/s	33.1 m ³	34.4 m ³

Table 3-2: Surface Water Attenuation Storage and Discharge Limits

The locations of the proposed attenuation systems are shown on Drawing 190187-DBFL-CS-SP-DR-C-1312. Refer to Appendix A for Attenuation Design Calculations which have been carried out using Microdrainage WinDes analysis software.

3.2.7 Interception Volume

The GDSDS (Vol. 2, Table 6.3) requires interception storage to be incorporated into surface water drainage design in order to limit discharge of sediment and pollutants into the downstream surface water drainage network and receiving water courses.

This interception storage is designed to capture surface water run-off from rainfall depths of 5mm (and up to 10mm if possible).

The SuDS features included in the development (refer to Section 3.2.4) will provide the necessary interception volume required by the GDSDS (ie permeable paving, tree pits, landscaped areas, within the stone backfill associated with the attenuation tank).

3.3 Flood Risk

A separate Site Specific Flood Risk Assessment has been prepared as part of this planning application (refer to DBFL Report No. 190187-DBFL-XX-XX-RP-C-0002).

This flood risk assessment has been undertaken by reviewing information from the Office of Public Works (OPW) National Flood Hazard Mapping (www.floods.ie) and the Eastern CFRAM Study and has been carried out in accordance with the OPW's Guidelines for Planning Authorities – The Planning System and Flood Risk Management (November 2009).

3.4 Surface Water Quality Impact

Run-off rates from the site are controlled by flow control devices.

Surface water management proposals for the development also incorporate the following impact reduction measures;

• Surface water network designed in accordance with GDSDS requirements

• Incorporates SUDS features e.g. permeable paving in the higher risk parking areas (i.e. treatment / filtration provided within the stone reservoir beneath permeable paving)

• Surface water attenuation (i.e. treatment / filtration provided within the granular surround of the Stormtech Chambers) in conjunction with a final Class 1 fuel / oil separator prior to discharge to the downstream surface water network.

4 Foul Drainage

4.1 Existing Foul Drainage

Existing 225mm diameter foul drainage networks are located north of the site on Dispensary Lane which extends north and east of the site. An existing 225mm diameter foul drainage sewer is also located along the site southern boundary (in vicinity of the existing temporary accommodation classrooms) which outfalls to the existing sewer infrastructure west of the site. Refer to Figure 4.1 below.

Figure 4-1: Extract from Irish Water's Network Plan

Proposed foul drainage works include removal of existing drainage lines to facilitate construction of the new link building and provision of new drains local to the school which facilitate the internal layout (location of WC's, hand basins etc.). Such drains will connect to the existing foul drainage infrastructure to the north and east of the site.

The proposed foul drainage upgrades for the site are shown on Drawing no. 190187-DBFL-CS-SP-DR-C-1311.

4.2 Pre-Connection Feedback from Irish Water

Pre-connection enquiry feedback has been received from Irish Water (included in Appendix B). Irish Water has advised as follows:

"Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time."

It also states that the wastewater connection is "Feasible without infrastructure upgrade by Irish Water".

4.3 Design Strategy

It is proposed to discharge foul drainage flows to the existing 225mm diameter foul sewer located along Dispensary Lane. Upgrades are also proposed to the existing infrastructure discharging southeast of the site, behind the existing school building.

4.4 Design Calculations

The foul drainage network for the proposed development has been designed in accordance with the following guidelines:

- Irish Water Code of Practice for Wastewater Infrastructure
- Department of the Environment's Building Regulations "Technical Guidance Document Part H Drainage and Waste Water Disposal"
- BS EN 752: 2008 Drain and Sewer Systems Outside Buildings
- IS EN 12056: Part 2 (2000) Gravity Drainage Systems Inside Buildings

4.5 Foul Drainage – Environmental Impacts

Waste Water Discharge Calculation

(as outlined in Irish Water's Pre-Connection Enquiry Application Form)

No. of Students

500

Post Development Average Discharge (Over 7 hours) 0.99 l/sec

Post Development Peak Discharge 5.95 l/sec

5 Water Supply and Distribution

5.1 Existing Public Watermains

The buildings on the site including Gaelcholáiste an Phiarsaigh and the existing temporary accommodation classrooms are served by a 4 inch cast-iron watermain traversing the site. An existing 6" diameter cast iron watermain is also located along Grange Road west of the site. Refer to Figure 5.1 below.

Figure 5-1: Existing Watermain Layout

5.2 Proposed Watermain Layout

It is proposed that the existing watermain infrastructure will service the proposed development. Refer to DBFL Drawing no. 190187-DBFL-WM-SP-DR-C-1411 for the proposed Watermain Layout. The construction of approximately 50m of 100mm ID new main may be required to facilitate the connection as stipulated below in the pre- connection feedback from Irish Water. This will be agreed at connection application stage.

5.3 **Pre-Connection Feedback from Irish Water**

Pre-connection enquiry feedback has been received from Irish Water (included in Appendix B). Irish Water has advised as follows:

"Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time."

Irish Water also stated that "In order to accommodate the proposed connection to Irish Water network at the Premises the following works are required:

• Connection Main - 50 metres (approx.) of 100mm ID new main to be connected to the existing 6" CI

• On site storage for the average day peak week demand of the commercial section. Separate storage is required to supply this demand for 24 hours and have a re-fill time of 12 hours."

The details of the extent of these works can be clarified during the connection application process.

5.4 Hydrants

Review of the topographic survey indicates existing hydrants are located to the east and west of Loreto Abbey, adjacent to the access off Grange Road and around the school grounds. These hydrants appear to be located such that all buildings are a maximum of 46.0m from a hydrant in accordance with the Department of the Environment's Building Regulations "Technical Guidance Document Part B Fire Safety".

Due to the realignment of the road and parking areas to the back of the school, an existing hydrant will need to be relocated. It is recommended that hydrant locations are reviewed as part of the overall fire safety strategy for the development. Refer to watermain layout drawing no. 190187-DBFL-WM-SP-DR-C-1411 for hydrant locations.

5.5 Materials

Proposed water mains are to be HDPE 100 SDR17.

Appendix A: Attenuation Calculation

DBFL Consul	ting	g Engi	neers							Page	1
Ormond Hous	se										
Upper Ormor	nd Oi	lav									
Dublin 7	~ ~	1								Micc	
Date 24/05/	202	2 08.3	0		Desid	med h	v noonar	la			U
Eile 100107	2024		7++000		Charl	ad br	y noonar	iu ii		Drair	nade
FILE 190107		ererim	Atten	ua	Check	rea pà					J
Innovyze					Sourc	ce Con	trol 202	20.1			
			_			_					
	<u>Sur</u>	<u>mary</u> (of Resu	ilts f	or 100) <u>year</u>	Return	Period	(+20%)	-	
			Ha	alf Drai	in Time	: 165	6 minutes				
	0+		Man	Mari			Maria	Mass	Maria	Chatwa	
	Fuen	#	Lovol	Depth	Mc Tnfilt	x	Max Control 3	Max Cutflow	Volume	Status	
	Rven		(m)	(m)	(1/	s)	(1/s)	(1/s)	(m ³)		
			(,	(,	(1)	3)	(1/3)	(1/3)	(111)		
15	min	Summer	49.954	0.302		0.0	1.5	1.5	72.2	O K	
30	min	Summer	50.072	0.420		0.0	1.5	1.5	100.6	ΟK	
60	min	Summer	50.211	0.559		0.0	1.5	1.5	133.9	ΟK	
120	min	Summer	50.363	0.711		0.0	1.5	1.5	170.1	ОК	
180	min	Summer	50.449	0.797		0.0	1.5	1.5	190.8	ΟK	
240	min	Summer	50.505	0.853		0.0	1.5	1.5	204.2	ΟK	
360	min	Summer	50.584	0.932		0.0	1.5	1.5	223.1	ΟK	
480	min	Summer	50.634	0.982		0.0	1.6	1.6	235.2	OK	
600	min	Summer	50.668	1.016		0.0	1.6	1.6	243.2	OK	
720	min	Summer	50.691	1.039		0.0	1.6	1.6	248.7	OK	
1440	min	Summor	50.715	1 069		0.0	1.0	1.0	255 0	OK	
2160	min	Summor	50.720	1 054		0.0	1.0	1.0	252.3	0 K	
2880	min	Summer	50 681	1 029		0.0	1.0	1.0	202.0	0 K	
4320	min	Summer	50 627	0 975		0.0	1 6	1.6	233 5	0 K	
5760	min	Summer	50.574	0.922		0.0	1.5	1.5	220.7	0 K	
7200	min	Summer	50.521	0.869		0.0	1.5	1.5	208.1	ΟK	
8640	min	Summer	50.470	0.818		0.0	1.5	1.5	195.8	ОК	
10080	min	Summer	50.420	0.768		0.0	1.5	1.5	183.9	ОК	
15	min	Winter	49.990	0.338		0.0	1.5	1.5	81.0	ΟK	
			Storm	F	Rain (Flooded	Discharg	ge Time-Pe	eak		
			Event	(m	m/hr)	Volume	Volume	(mins)		
						(m³)	(m³)				
		15	min Sur	nmer 9	4.897	0.0	70.	. 4	19		
		30	min Sur	nmer 6	6.446	0.0	97.	. 7	34		
		60	min Sur	nmer 4	4.573	0.0	136.	. 2	64		
		120	min Sur	nmer 2	8.828	0.0	175.	.6	124		
1		180	min Sur	nmer 2	1 929	0 0	199	5 '	184		

00	111211	Dunnier	11.070	0.0	100.2	01	
120	min	Summer	28.828	0.0	175.6	124	
180	min	Summer	21.929	0.0	199.5	184	
240	min	Summer	17.896	0.0	215.4	242	
360	min	Summer	13.454	0.0	232.9	362	
480	min	Summer	10.965	0.0	235.6	482	
600	min	Summer	9.345	0.0	235.8	602	
720	min	Summer	8.195	0.0	235.5	722	
960	min	Summer	6.652	0.0	234.7	960	
1440	min	Summer	4.943	0.0	234.9	1256	
2160	min	Summer	3.662	0.0	405.0	1644	
2880	min	Summer	2.954	0.0	433.0	2044	
4320	min	Summer	2.183	0.0	422.0	2892	
5760	min	Summer	1.763	0.0	522.6	3696	
7200	min	Summer	1.495	0.0	553.6	4544	
8640	min	Summer	1.307	0.0	580.6	5360	
10080	min	Summer	1.167	0.0	604.4	6160	
15	min	Winter	94.897	0.0	78.8	19	
		©1	982-2020	Innovyz	e		

DBFL Consul	ting Engi	neers							Page	2
Ormond Hous	se									
Upper Ormor	nd Ouav									
Dublin 7	2001									
Dabiin /	(2022 00.2	<u> </u>		Deci	anad b				- MICI	$\left[\mathbf{O} \right]$
Dale 24/03/	2022 00:5			Desi	gnea b	y noonana	1		Drai	nade
File 19018/	- Prelim	Atten	ua	Chec	ked by					
Innovyze				Sour	ce Con	trol 2020	0.1			
		_								
	Summary of Results for 100 year Return Period (+20%)								-	
	Storm May May May May May								Status	
	Event	Level	Depth	 Tnfilt	ration	Control E	Outflow	Volume	000000	
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m ³)		
30	min Winter	50.124	0.472		0.0	1.5	1.5	112.9	OK	
60	min Winter	50.280	0.628		0.0	1.5	1.5	101 C	O K	
120	min Winter	50.451 50 550	0./99		0.0	1.5	1.5	191.3 21/ 0	ΟK	
180	min Winter	50.550	0.030 0.030		0.0	1.0	1.5 1.6	214.9	O K	
240	min Winter	50.014	1 054		0.0	1.0	1.0	250.5	OK	
300	min Winter	50.700	1 115		0.0	1.7	1.0	252.4	O K	
400	min Winter	50.707	1 157		0.0	1.7	1 7	207.0	OK	
720	min Winter	50 839	1 1 97		0.0	1 7	1 7	201 2	OK	
720	min Winter	50 975	1 223		0.0	1 7	1 7	204.2	OK	
1440	min Winter	50.893	1 2/1		0.0	17	1.7	292.0	OK	
2160	min Winter	50 971	1 210		0.0	1 7	1 7	291.2	O K	
2100	min Winter	50.071	1 1 9 7		0.0	1 7	1 7	291.9	O K	
4320	min Winter	50.758	1 106		0.0	1 7	1 7	264.2	O K	
5760	min Winter	50.730	1 021		0.0	1 6	1.6	204.7	O K	
7200	min Winter	50.589	0 937		0.0	1 5	1 5	224 4	0 K	
8640	min Winter	50 509	0 857		0.0	1 5	1 5	205 1	0 K	
10080	min Winter	50.431	0.779		0.0	1.5	1.5	186.6	ОК	
		~	_							
		Storm Event	F /	kain m/h-n\	r Looded	volume	e Time-Pe	eak V		
		Evenc	(111	uu/ 111)	(m ³)	(m ³)	(111115	,		
					()	()				
	30	min Wir	nter 6	6.446	0.0	107.9)	33		
	60	min Wir	nter 4	4.573	0.0	152.4	ł	64		
	120	min Wir	nter 2	8.828	0.0	196.0) 1	122		
	180	min Wir	nter 2	1.929	0.0) 221.0) 1	180		
	240	min Wir	nter 1	7.896	0.0	233.7	2	240		
	360	min Wir	nter 1	3.454	0.0) 239.2		356		
	480	min Wir	nter 1	0.965	0.0	240.4	4	172		
	600	min Wir	nter	9.345	0.0	241.2	2	588		
	720	min Wir	nter	8.195	0.0	242.1	-	/02		
	960	min Wir	nter	6.652	0.0	244.8	3	930		
	1440	mın Wir	nter	4.943	0.0	249.2	13	358 710		
	2160	min Wir	nter	3.662	0.0	452.0) 17	112		
	2880	min Wir	nter	2.954	0.0	471.6	> 21	198		
	4320	min Wir	nter	2.183	0.0	444.3	s 31	112		
	5/60	min Wir	iter	1 405	0.0	585.3	s 4(132		
	1200	min Wlf	iter	1 307	0.0		, 49 E	704 702		
	10000	min Wil	nter	1 167	0.0) 676 -	.). 1 64	556		
1	T0000		TCCT	±•±0/	0.0	, 0/0.	00			

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House		
Upper Ormond Quay		
Dublin 7		Micco
Date 24/05/2022 08:30	Designed by noonana	
File 190187 - Prelim Attenua	Checked by	Digiligh
Innovyze	Source Control 2020.1	
<u>Ra</u>	infall Details	
Rainfall Model	FSR Winter Storms Y	les
Return Period (years)	100 Cv (Summer) 0.7	750
Region Engla	and and Wales Cv (Winter) 0.8	340
M5-60 (mm)	18.400 Shortest Storm (mins)	15
Summer Storms	Yes Climate Change %	+20
<u> </u>	<u>ne Area Diagram</u>	
Tota	al Area (ha) 0.412	
Ti Fr	ime (mins) Area om: To: (ha)	
	0 4 0.412	

DBFL Consulting Engineers			Page 4				
Ormond House							
Upper Ormond Quay							
Dublin 7			Micco				
Date 24/05/2022 08:30	Designed by no	onana					
File 190187 - Prelim Attenua	Checked by		Digingda				
Innovyze	Source Control	2020.1					
<u> </u>	<u>Iodel Details</u>						
Storage is On	line Cover Level	(m) 52.080					
Cellular Storage Structure							
Inver	t Level (m) 49.0	552 Safety Factor	2.0				
Infiltration Coefficient	Base (m/hr) 0.000	000 Porosity	0.95				
	SIDE (III/III) 0.000	100					
Depth (m) Area (m²) Inf. Are	a (m ²) Depth (m)	Area (m²) Inf. A	area (m²)				
0 000 252 0	252 0 1 670	0 0	252 0				
1.650 252.0	252.0	0.0	202.0				
	I						
<u>Hydro-Brake®</u>	Optimum Outflo	<u>ow Control</u>					
IIsit	Deference MD CUE	0050 2000 1670 2	2000				
Desig	n Head (m)	1.	. 670				
Design	Flow (l/s)		2.0				
	Flush-Flo™	Calcula	ated				
2	Objective Minim	ise upstream stor	rage				
A Sump	Available	Suri	Yes				
Dia	meter (mm)		59				
Invert	Level (m)	49.	. 652				
Minimum Outlet Pipe Dia	meter (mm)		75				
Suggested Manhole Dia	meter (mm)	1	200				
Control Po	ints Head (1	n) Flow (l/s)					
Design Point (Ca	lculated) 1.6	70 2.0					
j (F	'lush-Flo™ 0.2	54 1.5					
	Kick-Flo® 0.53	31 1.2					
Mean Flow over H	lead Range	- 1.5					
The hydrological calculations have b	een based on the	Head/Discharge re	alationship for the				
Hydro-Brake® Optimum as specified.	Should another ty	pe of control dev	vice other than a				
Hydro-Brake Optimum® be utilised the	n these storage r	outing calculatio	ons will be				
invalidated							
Depth (m) Flow (l/s) Depth (m) Flow	(1/s) Depth (m)	Flow (1/s) Depth	n (m) Flow (l/s)				
0 100 1 3 1 200	1 7 3 000	2 6 7	7 000 3 Q				
0.200 1.4 1.400	1.8 3.500	2.8	7.500 4.0				
0.300 1.5 1.600	2.0 4.000	3.0 8	3.000 4.1				
0.400 1.4 1.800	2.1 4.500	3.2 8	4.2				
0.500 1.3 2.000	2.2 5.000	3.3 9	9.000 4.4				
0.600 1.3 2.200	2.3 5.500	3.5 9	9.500 4.5				
0.800 1.4 2.400	2.4 6.000	3.6					
1.000 1.6 2.600 2.4 6.500 3.7							
©198	2-2020 Innovyz	е					

DBFL Consulting Engineers									Page	1
Ormond Hous	se								_	
Unner Ormor	d Quay									
Dublin 7	la guay									
				<u> </u>	1 1				– MICſ	0
Date 24/05/	2022 08:3	2		Desi	gned b	y noonar	na		Drain	าลตค
File 190187	- Prelim	Atten	ua	Chec	ked by				Bran	idge
Innovyze				Sour	ce Con	trol 202	20.1			
	Summary (of Resu	ults f	or 10	<u>0 year</u>	Return	Period	(+20응)	-	
Half Drain Time : 232 minutes.										
	Storm	Max	Max	M	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration	Control 2	E Outflow	Volume		
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
15	min Summer	51.087	0.397		0.0	1.5	1.5	15.6	ОК	
30	min Summer	51.234	0.544		0.0	1.5	1.5	21.4	ОК	
60	min Summer	51.385	0.695		0.0	1.5	1.5	27.4	ΟK	
120	min Summer	51.507	0.817		0.0	1.5	1.5	32.2	ΟK	
180	min Summer	51.541	0.851		0.0	1.5	1.5	33.5	ΟK	
240	min Summer	51.546	0.856		0.0	1.5	1.5	33.8	ΟK	
360	min Summer	51.543	0.853		0.0	1.5	1.5	33.6	ΟK	
480	min Summer	51.529	0.839		0.0	1.5	1.5	33.1	ΟK	
600	min Summer	51.509	0.819		0.0	1.5	1.5	32.3	ОК	
720	min Summer	51.487	0.797		0.0	1.5	1.5	31.4	OK	
960	min Summer	51.439	0.749		0.0	1.5	1.5	29.5	OK	
2160	min Summer	51.335	0.645		0.0	1.5	1.5	23.4	OK	
2100	min Summer	51 005	0.459		0.0	1.5	1.5	12 /	0 K	
4320	min Summer	50 854	0.515		0.0	1 4	1.5	65	0 K	
5760	min Summer	50.793	0.103		0.0	1.3	1.3	4.0	0 K	
7200	min Summer	50.768	0.078		0.0	1.1	1.1	3.1	ОК	
8640	min Summer	50.757	0.067		0.0	1.0	1.0	2.7	ОК	
10080	min Summer	50.750	0.060		0.0	0.9	0.9	2.4	ОК	
15	min Winter	51.137	0.447		0.0	1.5	1.5	17.6	0 K	
		Storm	F	Rain	Flooded	l Dischard	ge Time-Pe	eak		
		Event	(m	m/hr)	Volume	Volume	(mins	;)		
					(m³)	(m³)				
	1 -	min C		1 007	0.0	1.	7	1.0		
	3U T 2	min Sur	mmer 6	09/ 6 446	0.0	, TQ) 33	. /	<u></u> γ3		
	50 60	min Sur	mmer 4	4.573	0.0	, 20	. 4	62		
	120	min Sur	nmer 2	8.828	0.0	40	. 6	120		
	180	min Sur	mmer 2	1.929	0.0	46	. 4	174		
	240	min Sur	nmer 1	7.896	0.0	50	.4	202		
	360	min Sur	mmer 1	3.454	0.0	56	.9	266		
	480	min Sur	mmer 1	0.965	0.0	61	. 8	336		
	600	min Sur	mmer	9.345	0.0	65	.9	406		
	720	min Sur	mmer	8.195	0.0	69	.3	476		
	960	min Sur	mmer	6.652	0.0) 75	.0	616		
	1440	min Sur	mmer	4.943	0.0	83	.6	892		
	2160	min Sur	mmer	3.662	0.0	92	.9 1	272		
	2880	min Sur	mmer	2.954	0.0	100	. 1	588 252		
	4320	min Sur	mmer	∠.⊥ờj 1 763	0.0	110 J	.o Z.	202 911		
	5700	mini oʻul		±•/05	0.0		•			

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

126.4

132.6

138.2

18.7

1.495

1.167

7200 min Summer

10080 min Summer

8640 min Summer 1.307

15 min Winter 94.897

3672

4400

5136

18

DBFL Consulting Eng	jineers							Page 2
Ormond House								
Upper Ormond Quay								
Dublin 7								Micco
Date 24/05/2022 08:	32		Desi	gned by	y noonana	a		
File 190187 - Preli	.m Atten	ua	Chec	ked by				Digiligh
Innovyze			Sour	ce Cont	trol 2020	0.1		
Summary	of Resu	ults f	or 10	<u>0 year</u>	Return i	Period	(+20응)	-
Storm	Max	Max	Mi Trifilt	ax	Max Control 5	Max	Max	Status
Evenc	(m)	(m)	(1	/s)	(1/s)	(1/s)	(m ³)	
30 min Winte	er 51.305	0.615		0.0	1.5	1.5	24.2	ОК
60 min Winte	r 51.477	0.787		0.0	1.5	1.5	31.0	OK
180 min Winte	r 51.020	0.930		0.0	1.5	1.5	38.8	OK
240 min Winte	r 51.673	0.903		0.0	1.0	1.0	39 1	O K
360 min Winte	r 51,675	0.985		0.0	1.6	1.6	38.8	O K
480 min Winte	r 51.652	0.962		0.0	1.6	1.6	37.9	O K
600 min Winte	er 51.619	0.929		0.0	1.5	1.5	36.6	O K
720 min Winte	er 51.583	0.893		0.0	1.5	1.5	35.2	0 K
960 min Winte	er 51.504	0.814		0.0	1.5	1.5	32.1	ΟK
1440 min Winte	er 51.339	0.649		0.0	1.5	1.5	25.6	O K
2160 min Winte	er 51.044	0.354		0.0	1.5	1.5	14.0	O K
2880 min Winte	er 50.883	0.193		0.0	1.4	1.4	7.6	O K
4320 min Winte	er 50.774	0.084		0.0	1.2	1.2	3.3	O K
5760 min Winte	er 50.756	0.066		0.0	1.0	1.0	2.6	O K
7200 min Winte	er 50.746	0.056		0.0	0.8	0.8	2.2	O K
8640 min Winte	er 50.740	0.050		0.0	0.7	0.7	2.0	O K
10080 min Winte	er 50.736	0.046		0.0	0.6	0.6	1.8	0 K
	Storm	F	Rain	Flooded	Discharge	a Time-Pe	ak	
	Event	(m	m/hr)	Volume	Volume	(mins)	
				(m³)	(m³)			
	30 min Wir	nter 6	6.446	0.0	26.2)	32	
	50 min Wir	nter 4	4.573	0.0	35.2	2	62	
1:	20 min Wir	nter 2	8.828	0.0	45.5	5 1	18	
1:	30 min Wir	nter 2	1.929	0.0	51.9) 1	74	
2	40 min Win	nter 1	7.896	0.0	56.5	i 2	26	
3	50 min Wir	nter 1	3.454	0.0	63.7	2 2	82	
4	30 min Wir	nter 1	0.965	0.0	69.2	2 3	60	
6	00 min Wir	nter	9.345	0.0	73.8	3 4	38	
7:	20 min Wir	nter	8.195	0.0	77.6	5 5	14	
9	50 min Wir	nter	6.652	0.0	84.0) 6	64	
14	40 min Wir	nter	4.943	0.0	93.6) <u> </u>	56	
21	ou min Wir	nter	3.662	0.0	104.1	. 13	10	
28	su min Wir	iter	2.954	0.0	111.5	• 16	12	
43	20 min Wil 20 min Wi-	iter .	∠.⊥४≾ 1 760	0.0	124.1	. 22	.00	
)0 min Wli	nter	1 /05	0.0	1/1 4	, 25	20 08	
20	40 min Wil	nter	1.307	0.0	149.6	, 30 ; 43	28	
100	30 min Wir	nter	1.167	0.0	154.8	50	80	
						50		

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House		
Jpper Ormond Quay		
Dublin 7		Micco
Date 24/05/2022 08:32	Designed by noonana	
File 190187 - Prelim Attenua	Checked by	Dialitaye
Innovyze	Source Control 2020.1	
R	ainfall Details	
<u></u>		
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0.	.750
Region Engl	land and Wales Cv (Winter) 0.	.840
M5-60 (mm)	18.400 Shortest Storm (mins)	15
Ratio R	0.276 Longest Storm (mins) 10	080
Summer Storms	Yes Climate Change %	+20
Ti	me Area Diagram	
Tot	tal Area (ha) 0.094	
r F	^r ime (mins) Area rom: To: (ha)	
	0 4 0.094	

DBFL Consulting Engineers				Page	4
Ormond House					
Upper Ormond Quay					
Dublin 7				Mico	
Date 24/05/2022 08:32	Designed k	ov noona	ina		U
File 190187 - Prelim Attenua	Checked by	7		Ufall	nage
Innovyze	Source Cor	ntrol 20	20.1		
- 1 -					
<u> M</u>	Model Detai	ls			
	line Gerrer T		52.040		
Storage 18 On	line Cover L	evel (m)	53.040		
<u>Cellula</u>	<u>r Storage</u>	Structui	<u>re</u>		
Inver Infiltration Coefficient Infiltration Coefficient	t Level (m) Base (m/hr) Side (m/hr)	50.690 0.00000 0.00000	Safety Fact Porosi	tor 2.0 ity 0.95	
Depth (m) Area (m²) Inf. Are	a (m²) Depth	n (m) Are	a (m²) Inf	. Area (m²)	
0.000 41.5 1.650 41.5	41.5 41.5	.670	0.0	41.5	
<u>Hydro-Brake®</u>	Optimum O	utflow (<u>Control</u>		
us it	Poforonco M		59-2000-167	0-2000	
Desig	n Head (m)	D-SHE-003	9-2000-167	1.670	
Design	Flow (l/s)			2.0	
	Flush-Flo™		Calc	ulated	
_	Objective	Minimise	upstream s	torage	
A	pplication		S	urface	
Sump	AVALIADIE			10S 59	
Invert	Level (m)			50.690	
Minimum Outlet Pipe Dia	meter (mm)			75	
Suggested Manhole Dia	meter (mm)			1200	
Control Po	ints He	ad (m) F	low (l/s)		
Design Point (Ca	lculated)	1.670	2.0		
E	'lush-Flo™	0.264	1.5		
	Kick-Flo®	0.531	1.2		
Mean Flow over H	lead Range	-	1.5		
The hydrological calculations have b	een based on	the Head	l/Discharge	relationship f	for the
Hydro-Brake® Optimum as specified.	Should anoth	er type c	of control	device other th	nan a
Hydro-Brake Optimum® be utilised the	n these stor	age routi	ng calcula	tions will be	
Depth (m) Flow (l/s) Depth (m) Flow	(1/s) Depth	n (m) Flo	w (l/s) De	pth (m) Flow ()	1/s)
0.100 1.3 1.200	1.7	8.000	2.6	7.000	3.9
0.200 1.4 1.400	1.8 3	8.500	2.8	7.500	4.0
0.300 1.5 1.600	2.0	1.000	3.0	8.000	4.1
0.400 1.4 1.800	2.1 4	1.500	3.2	8.500	4.2
	2.2	.000	3.3	9.000	4.4
	2.3	5000	3.5	9.500	4.5
1.000 1.6 2.600	2.4	5.500	3.0		
	I		I		
©198	2-2020 Inn	ovyze			

DBFL Consulting Engi		Page 1						
Ormond House								
Upper Ormond Quay								
Dublin 7								
Dabiin /	2	Deci	and b)
Date 24/03/2022 08:3	J 	Desi	.gnea b	y noonana	1		Drain	апе
File 19018/ - Prelim	Attenua.	Chec	скеа ру					
Innovyze		Sour	ce Con	trol 2020).1			
	_							
Summary	<u>of Result</u>	s for 10	<u>JO year</u>	Return	Period (·	+20%)		
	Hali	Drain Ti	LME : 46	minutes.				
Storm	Max Ma	ax N	lax	Max	Max	Max	Status	
Event	Level Dep	oth Infil	tration	Control Σ	Outflow V	olume		
	(m) (n	n) (]	l/s)	(l/s)	(l/s)	(m³)		
15 min Summor	50 456 0 1	76	0 0	1 0	1 0	5 9	0 K	
30 min Summer	50.502 0.2	222	0.0	1.9	1.9	J.9 7.4	OK	
60 min Summer	50.528 0.2	248	0.0	1.9	1.9	8.3	0 K	
120 min Summer	50.535 0.2	255	0.0	1.9	1.9	8.5	ΟK	
180 min Summer	50.524 0 2	244	0.0	1.9	1.9	8.1	ОК	
240 min Summer	50.509 0.2	229	0.0	1.9	1.9	7.6	0 K	
360 min Summer	50.478 0.1	.98	0.0	1.8	1.8	6.6	ΟK	
480 min Summer	50.450 0.1	70	0.0	1.8	1.8	5.7	ОК	
600 min Summer	50.428 0.1	48	0.0	1.7	1.7	4.9	ОК	
720 min Summer	50.409 0.1	29	0.0	1.7	1.7	4.3	ОК	
960 min Summer	50.382 0.1	.02	0.0	1.6	1.6	3.4	ΟK	
1440 min Summer	50.357 0.0)77	0.0	1.3	1.3	2.6	ОК	
2160 min Summer	50.341 0.0	061	0.0	1.1	1.1	2.0	ОК	
2880 min Summer	50.332 0.0)52	0.0	0.9	0.9	1.7	ОК	
4320 min Summer	50.323 0.0)43	0.0	0.7	0.7	1.4	ОК	
5760 min Summer	50.318 0.0)38	0.0	0.5	0.5	1.3	ОК	
7200 min Summer	50.315 0.0)35	0.0	0.5	0.5	1.1	ΟK	
8640 min Summer	50.312 0.0)32	0.0	0.4	0.4	1.1	ОК	
10080 min Summer	50.310 0.0)30	0.0	0.4	0.4	1.0	ОК	
15 min Winter	50.480 0.2	200	0.0	1.8	1.8	6.6	ОК	
	Storm	Pain	Flooder	Discharge	Time-Dea	ŀ		
	Event	(mm/hr)	Volume	Volume	(mine)	~		
	Avenc	(1111)	(m ³)	(m ³)	(11115)			
			, /	, /				
15	min Summer	97.305	0.0	6.9) 1	6		
30	min Summer	66.658	0.0	9.5	5 3	0		
60	min Summer	43.030	0.0) 12.2	2 4	6		
120	min Summer	27.070	0.0	15.4	1 8	2		
180	min Summer	20.492	0.0	17.5	5 11	6		
240	min Summer	16.780	0.0) 19.1	14	8		
360	min Summer	12.632	0.0	21.6	5 21	4		
480	min Summer	10.315	0.0	23.5	5 27	6		
600	min Summer	8.810	0.0) 25.1	33	4		
720	min Summer	7.744	0.0	26.5	5 39	2		
960	min Summer	6.316	0.0	28.8	3 51	0		
1440	min Summer	4.738	0.0) 32.4	1 74	U		
2160	min Summer	3.548	0.0	36.4	110	4		
2880	min Summer	2.887	0.0	39.5	146	8		
4320	min Summer	2.156	0.0	44.2	220	U		
5760	min Summer	1./52	0.0	J 4/.9	288	8		

10080 min Summer

7200 min Summer 1.491

8640 min Summer 1.307

15 min Winter 97.305

1.170

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

51.0

53.6

56.0

7.7

3584

4296

4992

17

DBFL Consulting Engi	neers						Page 2
Ormond House							
Upper Ormond Ouay							
Dublin 7							
$D_{2} = 21/05/2022$ 08.3	3	Dogi	anod b	<u></u>			
Date 24/05/2022 08:5	J 7	Desi	lgnea b	y noonana	L		Drainage
File 19018/ - Prelim	Attenua	. Chec	cked by				Brainage
Innovyze		Soui	cce Con	trol 2020	.1		
Summary							
Storm	Max Max	L L	lax	Max	Max	Max	Status
Event	Level Dept	h Infil	tration	Control Σ	Outflow V	olume	
	(m) (m)	(_	L/S)	(1/s)	(1/s)	(m ³)	
30 min Winter	50.533 0.25	3	0.0	1.9	1.9	8.4	ОК
60 min Winter	50.562 0.28	2	0.0	1.9	1.9	9.4	O K
120 min Winter	50.563 0.28	3	0.0	1.9	1.9	9.4	ОК
180 min Winter	50.542 0.26	2	0.0	1.9	1.9	8.7	O K
240 min Winter	50.516 0.23	6	0.0	1.9	1.9	7.9	ОК
360 min Winter	50.467 0.18	/	0.0	1.8	1.8	6.2	O K
480 min Winter	50.428 0.14	ठ 0	0.0	1.7	1 7	4.9	OK
720 min Winter	50 378 0 00	0 8	0.0	⊥./ 1 6	1./ 1.6	3.9	OK
960 min Winter	50.358 0.07	8	0.0	1.4	1.4	2.6	0 K
1440 min Winter	50.340 0.06	0	0.0	1.0	1.0	2.0	0 K
2160 min Winter	50.328 0.04	8	0.0	0.8	0.8	1.6	ОК
2880 min Winter	50.323 0.04	3	0.0	0.7	0.7	1.4	O K
4320 min Winter	50.316 0.03	6	0.0	0.5	0.5	1.2	0 K
5760 min Winter	50.312 0.03	2	0.0	0.4	0.4	1.0	O K
7200 min Winter	50.309 0.02	9	0.0	0.3	0.3	1.0	0 K
8640 min Winter	50.307 0.02	7	0.0	0.3	0.3	0.9	ОК
10080 min Winter	50.305 0.02	5	0.0	0.3	0.3	0.8	0 K
	Storm	Rain	Flooded	Discharge	Timo-Doa	k	
	Event	(mm/hr)	Volume	Volume	(mins)		
		<i>、,</i>	(m ³)	(m ³)	(,		
30	min Winter	66.658	0.0) 10.6	3	0	
60	min Winter	43.030	0.0) 13.7	5	0	
120	min Winter	27.070	0.0	J 17.3	8	8	
180	min Winter	20.492	0.0	J 19.6	12	0 0	
240	min Winter	12.632	0.0) 24.2	10	6	
480	min Winter	10.315	0.0	26.3	28	6	
600	min Winter	8.810	0.0) 28.1	34	4	
720	min Winter	7.744	0.0	29.6	39	8	
960	min Winter	6.316	0.0	32.2	51	0	
1440	min Winter	4.738	0.0	36.3	75	0	
2160	min Winter	3.548	0.0	40.8	110	4	
2880	min Winter	2.887	0.0	44.2	146	8	
4320	min Winter	2.136 1 752	0.0	, 49.5) 53.7	214	4 8	
7200	min Winter	1.491	0.0) 57.1	364	8	
8640	min Winter	1.307	0.0	0 60.1	436	8	
10080	min Winter	1.170	0.0	62.7	513	6	

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House		
Upper Ormond Quay		
Dublin 7		Micco
Date 24/05/2022 08:33	Designed by noonana	
File 190187 - Prelim Attenua	Checked by	Digitigh
Innovyze	Source Control 2020.1	
<u>4</u>	ainfall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer)	0.750
Region Scot	land and Ireland Cv (Winter)	0.840
M5-60 (mm)	18.400 Shortest Storm (mins)	15
Ratio R	0.276 Longest Storm (mins)	10080
Summer Storms	Yes Climate Change %	+20
<u>T</u>	<u>ime Area Diagram</u>	
Тс	otal Area (ha) 0.038	
	Time (mins) Area	
1	From: To: (ha)	
	0 4 0.038	

DBFL Consulting Engineers			Page 4					
Ormond House								
Upper Ormond Quay								
Dublin 7			Micro					
Date 24/05/2022 08:33	Designed by noo	nana						
File 190187 - Prelim Attenua	Checked by		Digitight					
Innovyze	Source Control	2020.1						
<u>1</u>	<u>Iodel Details</u>							
Storage is On	Storage is online cover Level (m) 52.100							
Cellular Storage Structure								
	<u> </u>							
Inver	t Level (m) 50.28	0 Safety Factor	2.0					
Infiltration Coefficient	Base (m/hr) 0.0000	0 Porosity	0.95					
	Side (m/nr) 0.0000	0						
Depth (m) Area (m²) Inf. Are	ea (m²) Depth (m) A	rea (m²) Inf. Ar	cea (m²)					
0 000 35 0	35.0 1.065	0 0	35 0					
1.060 35.0	35.0	0.0	00.0					
	,							
<u>Hydro-Brake®</u>	Optimum Outflow	<u>Control</u>						
IIsit	Deference MD CUE (NACE 2000 1060 20	000					
Desig	n Head (m)	1.0	060					
Design	Flow (l/s)	2	2.0					
	Flush-Flo™	Calculat	ced					
2	Objective Minimis	se upstream stora	ige					
A Sump	Available	Suria	ice					
Dia	meter (mm)	-	66					
Invert	Level (m)	50.2	280					
Minimum Outlet Pipe Dia	meter (mm)	1	00					
Suggested Manhole Dia	meter (mm)	12	200					
Control Po	ints Head (m)	Flow (l/s)						
Design Point (Ca	lculated) 1.060	2.0						
F	'lush-Flo™ 0.291	1.9						
	Kick-Flo® 0.589	1.5						
Mean Flow over H	lead Range -	1.7						
The hydrological calculations have b	een based on the He	ead/Discharge rel	ationship for the					
Hydro-Brake® Optimum as specified.	Should another type	e of control devi	ce other than a					
Hydro-Brake Optimum® be utilised the	n these storage rou	ting calculation	ns will be					
Invalldated								
Depth (m) Flow (l/s) Depth (m) Flow	7 (l/s) Depth (m) F	low (l/s) Depth	(m) Flow (1/s)					
0.100 1.6 1.200	2.1 3.000	3 2 7	000 4 8					
0.200 1.8 1.400	2.3 3.500	3.5 7.	500 4.9					
0.300 1.9 1.600	2.4 4.000	3.7 8.	000 5.1					
0.400 1.9 1.800	2.5 4.500	3.9 8.	500 5.2					
0.500 1.8 2.000	2.7 5.000	4.1 9.	000 5.4					
0.600 1.5 2.200	2.8 5.500	4.3 9.	500 5.5					
	2.9 6.000	4.4						
1.000 1.0 2.000	5.01 0.500							
©198	2-2020 Innovyze							

DBFL Consulting Engineers									Page 1
Ormond House									
Upper Ormond O	uav								
Dublin 7	uuy								
	2 00.24	1		Deei					– Micro
Date 24/05/202.	2 08:34 			Desi	gnea p	y noonan	a		Drainage
File 19018/ - 1	Prelim	Atteni		Chec	ked by				Brainiage
Innovyze				Sour	ce Con	trol 202	0.1		
Sur	<u>mmary o</u>	f Resu	ilts f	<u>or 10</u>	0 year	Return	Period	(+20응)	-
	Half Drain Time : 157 minutes.								
Stor	rm	Max	Max	M	ax	Max	Max	Max	Status
Even	nt	Level	Depth	Infilt	ration	Control D	Outflow	Volume	
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
15	0		0 276		0 0	1 0	1 0	14 0	0. 77
15 Mili 30 min	Summer	50.596	0.370		0.0	1.9	1.9	14.3	OK
60 min	Summer	50.865	0.645		0.0	1.9	1.9	24.5	0 K
120 min	Summer	50.956	0.736		0.0	1.9	1.9	28.0	ОК
180 min	Summer	50.973	0.753		0.0	1.9	1.9	28.6	0 K
240 min	Summer	50.969	0.749		0.0	1.9	1.9	28.5	O K
360 min	Summer	50.952	0.732		0.0	1.9	1.9	27.8	0 K
480 min	Summer	50.924	0.704		0.0	1.9	1.9	26.8	ОК
600 min 720 min	Summer	50.893	0.673		0.0	1.9	1.9	25.6	OK
960 min	Summer	50.037	0.037		0.0	1.9	1.9	24.2	0 K
1440 min	Summer	50.616	0.396		0.0	1.9	1.9	15.0	0 K
2160 min	Summer	50.463	0.243		0.0	1.9	1.9	9.2	0 K
2880 min	Summer	50.379	0.159		0.0	1.8	1.8	6.0	ОК
4320 min	Summer	50.310	0.090		0.0	1.5	1.5	3.4	0 K
5760 min	Summer	50.292	0.072		0.0	1.3	1.3	2.7	0 K
7200 min	Summer	50.281	0.061		0.0	1.1	1.1	2.3	ОК
8640 min	Summer	50.275	0.055		0.0	0.9	0.9	2.1	OK
10080 min 15 min	Winter	50.271	0.051		0.0	19	U.8 1 9	16 1	OK
	WINCCI	50.015	0.420		0.0	1.9	1.9	10.1	0 R
	5	Storm	F	Rain	Flooded	l Discharg	e Time-Pe	eak	
	1	Event	(m	m/hr)	Volume	Volume	(mins)	
					(m³)	(m³)			
	15	min Sum	nmer 9	4.897	0.0	15.	6	18	
	30	min Sun	nmer 6	6.446	0.0	21.	9	32	
	60	min Sun	nmer 4	4.573	0.0	29.	4	62	
	120	min Sun	nmer 2	8.828	0.0	38.	0	120	
	180	min Sun	nmer 2	1.929	0.0	43.	4 2	152	
	240	min Sun	nmer 1	7.896	0.0	47.	2 1	184	
	360 100	min Sun	nmer 1	3.454 0 065	0.0	53.	3 2 9	252 322	
	400	min Sun	mer 1	0.900 9 325	0.0	57. 1 61	7	392	
	720	min Sum	nmer	8.195	0.0	64.	9 4	462	
	960	min Sun	nmer	6.652	0.0	70.	2 5	594	
	1440	min Sum	nmer	4.943	0.0	78.	3 8	336	
	2160	min Sun	nmer	3.662	0.0	87.	0 11	172	
	2880	min Sun	nmer	2.954	0.0	93.	6 15	524	
	4320	min Sun	nmer	2.183	0.0	103.	7 22	204	
	J/6U	min Sun	uner	1.103	0.0	, TTT.	/ 29	900	

7200 min Summer

10080 min Summer

8640 min Summer 1.307

15 min Winter 94.897

3672

4368

5112

18

118.4

124.2

129.4

17.5

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

1.495

1.167

DBFL Consulting Engineers					Page 2		
Ormond House							
Upper Ormond Quay							
Dublin 7							Micco
Date 24/05/2022 08:3	4	Desi	aned h	v noonana	9		
Eile 100107 Drolim Attorney			Checked by			Drainage	
	Attenua	Chec) 1		<u> </u>
Innovyze		Sour	rce Con	trol 2020).1		
		c 1/					
Summary	OI RESULTS	tor I	<u>JU year</u>	Return I	Period	<u>+208)</u>	-
Storm	May May	ħ	(av	Maw	May	Maw	Status
Event	Level Depth	Infil	tration	Control E	Outflow '	Volume	blatus
	(m) (m)	()	/s)	(1/s)	(1/s)	(m ³)	
30 min Winter	50.799 0.579		0.0	1.9	1.9	22.0	O K
60 min Winter	50.954 0.734		0.0	1.9	1.9	27.9	ОК
180 min Winter	51.090 0.849		0.0	1.9	1.9 1 9	33 1	OK
240 min Winter	51.083 0.863		0.0	1.9	1.9	32.8	0 K
360 min Winter	51.055 0.835		0.0	1.9	1.9	31.7	O K
480 min Winter	51.010 0.790		0.0	1.9	1.9	30.0	O K
600 min Winter	50.958 0.738		0.0	1.9	1.9	28.0	O K
720 min Winter	50.901 0.681		0.0	1.9	1.9	25.9	ОК
960 min Winter	50.760 0.540		0.0	1.9	1.9	20.5	OK
2160 min Winter	50 366 0 146		0.0	1 7	1.5	55	O K
2880 min Winter	50.309 0.089		0.0	1.5	1.5	3.4	0 K
4320 min Winter	50.284 0.064		0.0	1.1	1.1	2.4	O K
5760 min Winter	50.274 0.054		0.0	0.9	0.9	2.0	O K
7200 min Winter	50.268 0.048		0.0	0.8	0.8	1.8	0 K
8640 min Winter	50.264 0.044		0.0	0.7	0.7	1.7	OK
10080 min winter	50.261 0.041		0.0	0.6	0.0	1.5	ΟK
	Storm	Rain	Flooded	Discharge	Time-Pea	ak	
	Event (mm/hr)	Volume	Volume	(mins)		
			(m³)	(m³)			
	unios tatiente en		0 0	04 5		2.2	
30	min Winter min Winter	00.440 11 573	0.0	24.3		32 60	
120	min Winter	28.828	0.0	42.6	1	16	
180	min Winter	21.929	0.0	48.6	i 1'	70	
240	min Winter	17.896	0.0	52.9	1	92	
360	min Winter	13.454	0.0	59.7	2	70	
480	min Winter	10.965	0.0	64.8	3	48	
600	min Winter	9.345	0.0	69.1	. 42	24	
960	min Winter	6.652	0.0	78.6	6	36	
1440	min Winter	4.943	0.0	87.7	8	64	
2160	min Winter	3.662	0.0	97.4	11	72	
2880	min Winter	2.954	0.0	104.8	14	72	
4320	min Winter	2.183	0.0	116.2	22	04	
5760	min Winter	1.763	0.0	125.1	. 28'	12	
8640	min Winter	1.307	0.0	139 1	9 36 441	, <u>~</u>) ()	
10080	min Winter	1.167	0.0	144.9	51	36	

©1982-2020 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House		
Upper Ormond Quay		
Dublin 7		Micco
Date 24/05/2022 08:34	Designed by noonana	
File 190187 - Prelim Attenua	Checked by	urainage
Innovyze	Source Control 2020.1	
Ra	infall Details	
Rainfall Model	FSR Winter Storms Y	es
Return Period (years)	100 Cv (Summer) 0.7	50
Region Engla	and and Wales Cv (Winter) 0.8	40
M5-60 (mm)	18.400 Shortest Storm (mins)	15
Ratio R	0.276 Longest Storm (mins) 100	-20
Summer Scorms	Tes Crimate Change .	20
Tir	ne Area Diagram	
Tota	al Area (ha) 0.088	
Ti Fr	me (mins) Area om: To: (ha)	
	0 4 0.088	

DBFL Consulting Engineers			Page 4			
Ormond House						
Upper Ormond Quay						
Dublin 7			Micco			
Date 24/05/2022 08:34	Designed by r	noonana				
File 190187 - Prelim Attenua	Checked by		Drainage			
Innovyze	Source Contro	ol 2020.1				
M	Nodel Details					
Storens is on	line Course Lours	(m) E1 640				
Storage is Online Cover Level (m) 51.640						
<u>Cellula</u>	<u>r Storage Str</u>	<u>ucture</u>				
Invert Level (m) 50.220 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000						
Depth (m) Area (m²) Inf. Are	a (m²) Depth (m) Area (m²) Inf. Ar	ea (m²)			
0.000 40.0 1.060 40.0	40.0 40.0	5 0.0	40.0			
<u>Hydro-Brake®</u>	Optimum Outf	low Control				
Unit	Reference MD-SH	4E-0066-2000-1060-20	100			
Desig	n Head (m)	1.0	60			
Design	Flow (l/s)	2	.0			
	Flush-Flo™	Calculat	.ed			
	Objective Mini	imise upstream stora	ge			
Aj	pplication Available	Suria	.ce 'es			
Dia	meter (mm)	1	66			
Invert	Level (m)	50.2	20			
Minimum Outlet Pipe Dia	meter (mm)	1	.00			
Suggested Manhole Dia	meter (mm)	12	00			
Control Po:	ints Head	(m) Flow (1/s)				
Design Point (Ca	lculated) 1.	060 2.0				
F	lush-Flo™ 0.	291 1.9				
Maria El aconomica	Kick-Flo® 0.	589 1.5				
Mean Flow over H	ead Range	- 1./				
The hydrological calculations have b	een based on the	e Head/Discharge rel	ationship for the			
Hydro-Brake® Optimum as specified.	Should another t	type of control devi	ce other than a			
Hydro-Brake Optimum® be utilised the	n these storage	routing calculation	s will be			
invalidated						
Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth (m) Flow (l/s) Depth	(m) Flow (l/s)			
0.100 1.6 1.200	2.1 3.00	0 3.2 7.	000 4.8			
0.200 1.8 1.400	2.3 3.50	0 3.5 7.	500 4.9			
0.300 1.9 1.600	2.4 4.00	0 3.7 8.	000 5.1			
0.400 1.9 1.800	2.5 4.50	0 3.9 8.	500 5.2			
0.500 1.8 2.000	2.7 5.00	0 4.1 9.	000 5.4			
0.600 1.5 2.200	2.8 5.50	U 4.3 9.	500 5.5			
1.000 1.8 2.400	3.0 6.50	0 4.4				
	1	[
©198	2-2020 Innovy	/ze				

Appendix B: Correspondence with Irish Water

Emma Daly

Ormond House Upper Ormond Quay Dublin 7 Co. Dublin D07W704

Oifig Sheachadta na Cathrach Theas Cathair Chorcaí Irish Water

Uisce Éireann Bosca OP 448

14 July 2021

www.water.ie

PO Box 448, South City Delivery Office, Cork City.

Re: CDS20007567 pre-connection enquiry - Subject to contract | Contract denied

Connection for Business Connection of 1 unit(s) at Gaelcholaiste An Phiarsaigh, Rathfarnham, Co. Dublin

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Gaelcholaiste An Phiarsaigh, Rathfarnham, Co. Dublin (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>		
Water Connection	Feasible without infrastructure upgrade by Irish Water		
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water		
SITE SPECIFIC COMMENTS			
Water Connection	 In order to accommodate the proposed connection to Irish Water network at the Premises the following works are required: Connection Main - 50 metres (approx.) of 100mm ID new main to be connected from the site location to the existing 6" CI On site storage for the average day peak week demand of the commercial section. Separate storage is required to supply this demand for 24 hours and have a re-fill time of 12 hours. Should you wish to progress with the connection you will be required to fund this extension. 		
Wastewater Connection	N/A		

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares.

IW-HP-

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact

location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations

Registered Office Ormond House Upper Ormond Quay Dublin 7 Ireland D07 W704

+ 353 1 400 4000 info@dbfl.ie www.dbfl.ie

Cork Office 14 South Mall Cork T12 CT91

+ 353 21 202 4538 info@dbfl.ie www.dbfl.ie

Waterford Office Suite 8b The Atrium Maritana Gate, Canada St Waterford X91 W028

+ 353 51 309 500 info@dbfl.ie www.dbfl.ie