REF. NO.:	914 /1427 CERTIFICATE NO.: 17	1-396 B
PROPOSAL:	Building	
LOCATION:	Fox . Geese, Naas Rd.	
APPLICANT:	: Packaging Ind. Ltd.	

BYE LAW APPLICATION FEES

p.= 2m	1	2	3	4	5	6	7
CLASS	DWELLINGS/AREA LENGTH/STRUCTURE	RATE	AMT. OF FEE REQUIRED	AMT. LODGED	BALANCE DUE	RED. FEE APPL.	AMT. OF RED. FEE
A	Dwelling (Houses/Flats)	@ £55					
В	Domestic Ext. (Improvement/ Alts.)	@ £30					
С	Building for office or other comm. purpose	@ £3.50 per M ² or £70	14935 2	11935			
D	Building or other structure for purposes of agriculture	@ £1.00 per M ² in excess of 300 M ² Min. £70					
E	Petrol Filling Station	@ £200					
F	Dev. of prop. not coming within any of the forgoing classes	£70 or £9 per .1 hect. whichever is the greater					

Column 1 Certified:	Signed:	Grade:	Date:	
Column 1 Endorsed:	Signed:	Grade:	Date:	_
Columns 2,3,4,5,6 &	7 Certified:	Signed: M Grade:		<u></u>
Columns 2,3,4,5,6 &	7 Endorsed:	Signed: Grade:	Date:	

Reg. Ref. 9.19/1427 Cert. No. 36517 PROPOSAL Demolition of Residential unit, 2 Stones offices, t LOCATION FOX & George Near Road D. 12 charged elevation APPLICANT Packaging Industries Util						
Reg. F	lei Domekition	n of R	2sidential	. Unit.	2Stones	offices, +
PROPOS	FOX A G	epp Naas	Road	A.12	- dvye	of Sevata
дррт.те	Packal	in Indu	trues !!	d		
		<u> </u>				1
CLASS	DWELLINGS/AREA LENGTH/STRUCT.	RATE	AMT. OF FEE REC.	AMOUNT LODGED	BALANCE DUE	BALANCE PAID
1	Dwellings	@£32		er waardaariig geween war official Cabactista		
2	Domestic,	@£16	Land and the second second second second	grand grands are seen		
3	Agriculture	<pre>@50p per m2 in excess of 300m2. Min. £40</pre>			0	
4	Metres 140.0	@£1.75 per m2 or £40	£2467.55	2470	42.50	acetyst
5	x .1 hect.	@£25 per .1 hect. or £250		•		
6	x .1 hect.	0f25 per .1 hect. or f40				
7	x .1 hect.	@£25 per .1 hect. or £100				
8		@£100				
9	x metres	@£10 per m2 or £40		and the state of t		
10	x 1,000m	@£25 per £1000m or £40				
11	x .1 hect.	0f5 per .1 hect. or	2/80	80		
Column 1 Certified: Signed: J. Grade D. Date. 5/9/9/						
Column 1 Endorsed:Signed:GradeDate						
Columns 2,3,4,5,6 & 7 Certified: Signed Grade						
Columns 2,3,4,5,6 & 7 Endorsed:Signed:GradeDate						

LCCATION CONTENDED (PLANNING AND DEVELOPMENT) ACTS, 1988 TO 1982

CRT. REG.:

ERILLES BRICEVED: WATER FOUL SENER SEFFACE WATER

FE4 OF SITE:

PECE ET:

ETHOD OF ASSESSMENT:

TOTAL ASSESSMENT

AVADER'S CRIERED NO: F/ DATED

THE STATE OF STATE OF

411384

Register Reference: 91A/1427

Date : 9th September 1991

Development : Demolition of single storey residential unit to rear of site, erection of single storey warehouse with associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational change to existing buildings fronting onto Naas Road

: Fox & Geese, Naas Road, Dublin 22 LOCATION

: Packaging Industries Limited Applicant

App. Type : PERMISSION

Planning Officer : N.O'BYRNE

Date Recd. : 30th August 1991

Attached is a copy of the application for the above development . Your report would be appreciated within the next 28 days.

DUBLIN COUNTY COLD OF - 1 GCT 1991 ENVIRONMENTAL WILLTH

Yours faithfully,

for PRINCIPAL OFFICER

No objections to this peoposal provided complexes with 2 effer Preuses Act 1958 à logs made themades 3 Safety in Industries Acts 1955-80. 3 Health Sufety - Welface at work Act 1989. a) Suitable and sufficient vertilation to be provided to all suriting accommedation and adjoining labores. Jacke Recon EHO 9/10/71.

sta Devine SUPER.ENVIRON. HEALTH OFFICER, 33 GARDINER PLACE,

DUBLIN 1. 9/=10/91

PLANNING DEPT. DEVELOPMENT CONTROL SECT
Date
Time10.00

DUBLIN COUNTY COUNCIL

REG. REF:

91A/1427.

DEVELOPMENT:

Demolition of single storey residential unit to rear of site, erection of single storey warehouse with associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational change to existing buildings fronting onto Naas Road.

LOCATION:

Fox & Geese, Naas Road.

APPLICANT:

Packaging Industries Ltd.

DATE LODGED:

30.8.91.

While Roads are opposed to such developments immediately adjoining a National Primary Route it is recognised that what is being proposed is a considerable improvement on the existing situation on site.

Roads are prepared to recommend off-setting any roads contribution (i.e. 70 car spaces at £200 = £14,000) against improvement works (i.e. resurfacing, etc.) being carried out by the developer over the private access lane which serves this site and from thence the adjoining private houses. Details of these works, along his sites frontage only, should be submitted to Roads Department for approval.

Otherwise, no Roads objections.

PLANNIN	G DEPT.
DEVELOPMENT	CONTROLSECT
Date 14.1	0:91
Time3	1
111116	

TB/BMcC 10.10.91.

SIGNED:	4.Buil	ENDORSED:	- a
DATE:	11/10/91	DATE:	

P14832/91

COMHAIRLE CHONTAE ATHA CLIATH

Record of Executive Business and Manager's Orders

Register Reference: 91A/1427

Date Received: 30th August 1991

Correspondence : The Ambrose Kelly Group,

Name and

: Fleming Court,

Address

Fleming's Place,

Dublin 4

Development : Demolition of single storey residential unit to rear of

site, erection of single storey warehouse with

associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational doubt seems buildings.

Location

: Fox & Geese, Naas Road, Dublin 22

Applicant : Packaging Industries Limited

App. Type : Permission .

Zoning

Floor Area :

Sq.metres

(NOB/AC)

Report of the Dublin Planning Officer dated 14 October 1991.

This is an application for PERMISSION for a two-storey office development, single-storey warehouse, associated offices and production area and the demolition of a semi-detached dwelling at the Packaging Industries premises on the Naas Road at its junction with a cul-de-saced section on Robinhood Road.

The site is located in an area subject to the zoning objective "to provide for industrial and related uses". No change is proposed in the 1991 Draft Development Plan.

Reg. Ref. TA.1108 refers to a decision to refuse permission for the retention of a storage building, confirmed on appeal.

Reg. Ref. WA.258 refers to a decision to refuse permission for the retention of a storage building. This decision was confirmed on appeal. This application was identical to TA.1108.

Reg. Ref. XA.2127 refers to a decision to grant a temporary permission for the retention of a storage building.

Reg. Ref. 85A/0209 refers to a decision to grant a temporary permission for the retention of a storage building. This temporary permission expired on .30-08.90.

s Sers

Open Space:

Other:

SECURITY:

Bond / C.I.F .:

Cash:

Record of Executive Business and Manager's Orders

Reg.Ref: 91A/1427

Page No: 0002

Location: Fox & Geese, Naas Road, Dublin 22

The decision also required that pending the permission of alternative access across industrial lands to the south, that the sole access to the site shall be from the adjoining cul-de-saced section of Robinhood Road.

The current application refers to a proposal to upgrade the existing Packaging Industries premises and for extensions which include a warehousing building with associated offices and first-floor production area and a separate two-storey office building to the rear. It is also proposed to demolish a dwelling which is one half of a semi-detached pair.

The existing use of the site is light industry for the manufacturing of printed paper bags and labels and for the storage and distribution of a variety of plastic containers. The current operation of the business involves production areas, offices and storage being combined and this application represents a proposal to rationalise the existing business on the site and to consolidate the activities of the enterprise which currently uses storage facilities in adjoining industrial areas.

A section of the existing building on the site is excluded from the current application as this relates to an existing restaurant with a separate legal title. The first-floor level of the existing portion of the premises fronting onto the Naas Road is excluded for the same reason.

The main element of the proposed development is the warehouse with production space at the first-floor. The building is designed to use 2 different steel frame spans, one of 12m. and the other 19m. The gain between the two spans is at a slightly oblique angle to follow the site boundary. This approach enables a free 6m. wide access to the car parking area at the rear of the site.

The two-storey section of this warehouse is located on the site of the semi-detached cottage to be demolished. The party wall will be reconstructed to the satisfaction of the owner of the remaining property. The cottage to be demolished was uninhabitable at the time of inspection. The eaves height of the warehouse is proposed to be 6.5m. There is a proposed first-floor production area of 320 sq.m., with 510 sqm. of warehousing and ink store at ground level. Profiled match cladding is proposed as the external finish. The design of the elevation to the access road however includes a rendered relief panel to reduce the apparent bulk of the building.

The proposed office development is two-storey and adjoins the existing production area. The site for the offices is currently partly occupied by a number of small sheds and stores. The proposed office building includes provision for a 40 sq.m. showroom, board room and toilets. External finish proposed is painted smooth rendering with a rendered relief band and a tiled

Record of Executive Business and Manager's Orders

Reg.Ref: 91A/1427

Page No: 0003

Location: Fox & Geese, Naas Road, Dublin 22

roof. The proposed offices provide for some additional office space for the existing enterprise on site and for re-locating existing office use from within the existing production area and, therefore, can be considered ancillary to the industrial use of the site.

The application includes proposals to alter and upgrade the existing sections of the elevation to the Naas Road which are within the applicants control. The proposals include reducing the size of existing windows to a scale which achieves a better integration of the development with that part of the premises not included in this application. It is also proposed to replace existing pebble dash finish with painted smooth rendering and to close off an existing entrance f rom the Naas Road with railings on a dwarf wall. These proposals would improve an existing poor and prominent elevation.

Access to the site is proposed only from the existing lane adjoining the site. Provision is made for 69 car parking spaces. Twenty-eight of these spaces are proposed on a section of the site on the east side of the access lane. Five spaces also are indicated on the access lane with the balance within and to the rear of the site.

Roads Department report considers the proposal an improvement over the present situation on site. The report also recommends either as financial contribution towards improving the lane and frontage or the applicant paying a contribution towards the costs of such works.

The plans also indicate provision for signage, but details have not been provided.

Sanitary Services Section report Miles

M

Supervising Environmental Health Officer report not Miller.

The proposed development is consistent with the provision of the Development Plan 1983 and represent a reasonable expansion and consolidation of an existing established industrial use. The proposal also provides for upgrading a prominent elevation to the Naas Road.

I recommend that a decision to GRANT PERMISSION be made under the Local Government (Planning and Development) Acts 1963-1990, subject to the following (%) conditions:-

Record of Executive Business and Manager's Orders

Reg.Ref: 91A/1427

Page No: 0004

services.

er i de jar

Location: Fox & Geese, Naas Road, Dublin 22

CONDITIONS/REASONS

- 01 The development to be carried out in its entirety in accordance with the plans, particulars and specifications lodged with the application save as may be required by the other conditions attached hereto.

 REASON: To ensure that the development shall be in accordance with the permission and that effective control be maintained.
- 02 That before development commences, approval under the Building Bye-Laws be obtained and all conditions of that approval be observed in the development.

 REASON: In order to comply with the Sanitary Services Acts, 1878-1964.
- 03 That the requirements of the Supervising Environmental Health Officer be ascertained and strictly adhered to in the development.

 REASON:- In the interest of health.
- 04 That a financial contribution in the sum of £ 11,384 be paid by the proposer to the Dublin County Council towards the cost of provision of public services in the area of the proposed development and which facilitate this development; this contribution to be paid before the commencement of development on the site.

 REASON: The provision of such services in the area by the Council will facilitate the proposed development. It is considered reasonable that the developer should contribute towards the cost of providing the
- 05 That no advertising sign or structure be erected except those which are exempted development, without prior approval of Planning Authority. REASON: In the interest of the proper planning and development of the area.
- Of The applicant shall be responsible for improvements to the private side access lane serving the proposed development, including resurfacing and the provision of kerbing. Details in this regard, including a programme of implementation shall be submitted for the written agreement of the Planning Authority before any development commences.

 NOTE: The applicant is advised to consult with the Council's Roads Department before submitting any proposals for compliance with this condition.
- 06 REASON: In the interest of the proper planning and development of the

Record of Executive Business and Manager's Orders

Reg.Ref: 91A/1427

Page No: 0005

Location: Fox & Geese, Naas Road, Dublin 22

area.

- 07 The existing entrance off the Naas Road shall be closed off permanently before the occupation of the office or warehouse development permitted by this decision.
- 07 REASON: In the interest of the proper planning and development of the area.
- 08 Before any development commences the applicant shall submit, for the written agreement of the Planning Authority, proposals to discourage or avoid on-street car or lorry parking along the Naas Road frontage of the site.
- 08 REASON: In the interest of the proper planning and development of the area.

NOTE: Compliance with one or more of the conditions of this permission may result in material alterations to the development as initially proposed and, accordingly, may require the submission of a further planning application.

Record of Executive Business and Manager's Orders

Reg.Ref:	91A/1427		

Page No: 0006

Location: Fox & Geese, Naas Road, Dublin 22

ndorsed:- No for Dublin Planning Officer

for Principal Officer

Order: A decision pursuant to Section 26(1) of the Local Government (Planning and Development) Acts, 1963-1990 to GRANT PERMISSION for the above proposal subject to the () conditions set out above is hereby made.

Dated: COTOBER 1991

ASSISTANT COUNTY MANAGER/APPROVED OFFICER to whom the appropriate powers have been delegated by order of the Dublin City and County Manager dated 2/N october 1991.

١.

DUBLIN COUNTY COUNCIL

REG. REF:

91A/1427.

DEVELOPMENT:

Demolition of single storey residential unit to rear of site, erection of single storey warehouse with associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational change to existing buildings fronting onto Naas Road.

LOCATION:

Fox & Geese, Naas Road.

APPLICANT:

Packaging Industries Ltd.

DATE LODGED:

30.8.91.

While Roads are opposed to such developments immediately adjoining a National Primary Route it is recognised that what is being proposed is a considerable improvement on the existing situation on site.

Roads are prepared to recommend off-setting any roads contribution (i.e. 70 car spaces at £200 = £14,000) against improvement works (i.e. resurfacing, etc.) being carried out by the developer over the private access lane which serves this site and from thence the adjoining private houses. Details of these works, along his sites frontage only, should be submitted to Roads Department for approval.

Otherwise, no Roads objections.

		CDT	ļ
T	PLANNING D	EPI	;
	DEVELOPMENT CONT	ROL	
1	11.10.91	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ì	Date		ı
	10.30		

TB/BMcC 10.10.91.

SIGNED:	4.3	ENDORSED:	<u></u>
DATE:	11/10/91	DATE:	

Niall O'Burne.

D

Register Reference: 91A/1427

Date: 9th September 1991

Development: Demolition of single storey residential unit to rear of site, erection of single storey warehouse with associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational change to existing buildings fronting onto Naas Road

LOCATION

: Fox & Geese, Naas Road, Dublin 22

Applicant

: Packaging Industries Limited

App. Type

: PERMISSION

Planning Officer: N.O'BYRNE

Date Recd. : 30th August 1991

Date Recu. : 30th August 1991

Yours faithfully,

Date 2-10-91

PLANNING DEPT.

DEVELOPMENT CONTROL SECT

DUBLIN CO. COUNCIL FOR DIPPLIED CER SANITARY SERVICES

12 SEP 1991

SAN SERVICES

Returned And has not submitted decreased back) indeed lawles, grained levels or finally floor lawles

SURFACE WATER Insufficient imformation; No permission can be granted until the applicant has established that the loads department with grant access to the Naos Road sever.

SENIOR ENGINEER, the applicant must submit invest civels and SANITARY SERVICES DEPARTMENT, grant level.

46/49 UPPER O'CONNELL STREET,

DUBLIN 1

23. 9. 9

J.g. 19/91

NYBOL.

PLANNING DEPT.

PLANNING DEPT.

DEVELOPMENT CONTROL SECT

DEVELOPMENT CONTROL SECT

DEVELOPMENT CONTROL SECT

DEVELOPMENT CONTROL SECT

DATE

10.00

WATER SUPPLY AV II able for proceduse 14 hours story to

the grow what a specially warn layout about substite

S.S. Jeff enoposed of warn layout about substite

detries of exist water warn layout

Defer to C.F.D.

DATE 25/9/91

DUBLIN COUNTY COUNCIL

Building Control	Department,
Liffey House,	
Tara Street,	
Dublin 1.	

Planning Department, Irish Life Centre, Lower Abbey Street, Dublin 1.

Telephone: 724755 231/234 Extension:

Telephone: 773066

28th February, 1992

LOCAL GOVERNMENT (PLANNING AND DEVELOPMENT) ACTS, 1963 TO 1982

Packaging Industries Limited, Fox & Geese, Naas Road LOCATION: 2-storey office building and associated warehouse building PROPOSED DEVELOPMENT: Packaging Industries Ltd. APPLICANT: PLANNING REG.REF.:

91A/1427

DATE OF RECEIPT OF SUBMISSION:

6th February, 1992

A Chara,

With reference to above, I acknowledge receipt of application for:

Building Bys-Law Approval

Mise, le mess A. Smith

PRINCIPAL OFFICER

The Ambrose Kelly Group,	والمسيينة ي ي				
Flaming Court,			298 ±		, ·
Flaming's Place.		2 .			
Dublin 4	Table a second				
		™	ż	-	1.
			ε .		
			in vicini	•	- = ·

Dublin County Council Comhairle Chontae Atha Cliath PLEASE READ INSTRUCTIONS AT BA

Bye - Law Application Form

	FLEASE REAU INSTRUCTIONS AT RACK REFORE COLUMN
1	Application for Permission Outline Permission Approval Place in appropriate box. Approval should be sought only where an outline permission was previously granted. Outline permission may not be sought for the retention of structures or continuances of uses.
2.	Postal address of site or building Packaging Industries Limited, Fox & Geese, Naas Road, (If none, give description
_	sufficient to identify)
3.	Name of applicant (Principal not Agent). Packaging Industries Limited
	Address de de de de Roud, Duplin 22.
4.	Name and address of
_	for preparation of drawings Fleming's Place, Dublin 4.
5.	Name and address to which The Ambrose Kelly Group Floring Court Floring
	Dublin 4
6.	Brief description of
	Building a 2-storey office building a storey of the building a storey o
7.	
v.	(a) Present use of each floor
	or use when last used
	(b) Proposed user of each floor Warehouse with associated offices
'	or change of use of any habitable house or part the second and the
•	4343
(t	b) Floor area of proposed development
(c	Sq. m. 900
72.SI	tate applicant's lengt interest as a second of the second
η.	e. treehold, leasehold, etc.) Freehold Owner
_	re you now applying also for an approval under the Building Bya Laws? es \(\sum \) No \(\supers \) Place \(\supers \) in appropriate box.
4.P	lease state the extent to which the Draft Building Regulations have been taken in account in your proposal:
***	The Draft Ballating Regulations have been fully taken into account
5.Li: ap	plication.
	See Covering Letter BYE LAW APPLICATION
_	FIC NO NS 7314
6.Gr	ross floor space of proposed development (See back) 1410 £4935.00
No	of dwellings proposed (if any) N/A
	Tayable Limiting Street Annual Pasis of Calabase 14/10 cm and 20 cm Annual Pasis of Calabase Street
1 1 :	a reduced fee is tendered details of previous relevant payment should be given N/A
e:-	January Company of the Company of th
	gnature of Applicant (or his Agent) Levello Buppe . Date 5th February, 1992.
Ap Re	gister Reference FOR OFFICE USE ONLY
Am	gister Reference 9/0/1427 RECEVED 3. (8. 4.4
	06 FF B 1997
Dat	DEC OFF

LOCAL GOVERNMENT (PLANNING & DEVELOPMENT) REGULATIONS 1977 to 1984.

- Outline of requirements for applications for permission or Approval under the Local Government (Planning & Development) Acts 1963 to 1983. The Planning Acts and Regulations made thereunder may be purchased from the Government Publications Sales Office, Sun Alliance House, Molesworth Street, Dublin 2.
- 1. Name and Address of applicant.
- Particulars of the interest held in the land or structure, i.e. whether freehold, leasehold, etc. 2.
- The page of a newspaper, circulating in the area in which the land or structure is situate, containing the required statutory notice. The newspaper advertisement should state after the heading Co. Dublin.
 - The address of the structure or the location of the land.
 - The nature and extent of the development proposed. If retention of development is involved, the notice should be worded accordingly. Any demolition of habitable accommodation should be indicated.
 - The name of the applicant.
 - NB. Applications must be received within 2 weeks from date of publication of the notice.
- Four (4) sets of drawings to a stated scale must be submitted. Each set to include a layout or block plan, proposed and existing services to be shown on this drawing, location map, and drawings of relevant floor plans, elevations, sections, details of type and location of septic tank (if applicable) and such other particulars as are necessary to identify the land and to describe the works or structure to which the application relates (new work to be coloured or otherwise distinguished from any retained structures). Buildings, roads, boundaries and other features bounding the structure or other land to which the application relates shall be shown on site plans or layout plans. The location map should be of scale not less than 1: 2500 and should indicate the north point. The site of the proposed development must be outlined in red. Plans and drawings should indicate the name and address of the person by whom they were prepared. Any adjoining lands in which the applicant has an interest must be outlined in blue.
- In the case of a proposed change of use of any structure or land, requirements in addition to 1, 2, & 3 are:
 - (a) a statement of the existing use and the proposed use, or, where appropriate, the former use and the use proposed.
 - (b) (i) Four (4) sets of the drawings to a stated scale must be submitted. Each set to consist of a plan or location map (marked or coloured in red so as to identify the structure or land to which the application relates) to a scale of not less than 1:2500 and to indicate the North point. Any adjoining lands in which the application has an interest must be outlined in blue.
 - (ii) A layout and a survey plan of each floor of any structure to which the application relates.
 - Plans and drawings should indicate the name and address of the person by whom they were prepared.
- Applications should be addressed to: Dublin County Council, Planning Department, Irish Life Centre, Lr. Abbey Street, Dublin 1, Tel. 724755.

SEPTIC TANK DRAINAGE: Where drainage by means of a septic tank is proposed, before a planning application is considered, the applicant may be required to arrange for a trialhola to be inspected and declared suitable for the satisfactory percolation of septic tank effluent. The trial hole to be dug seven feet deep at or about the site of the septic tank. Septic tanks are to be in accordance with I.I.R.S. S.R. 6:75.

INDUSTRIAL DEVELOPMENT:

The proposed use of an industrial premises should, where possible, be stated together with the estimated number of employees, (male and female). Details of trade effluents, if any, should be submitted.

Applicants to comply in full with the requirements of the Local Government (Water Pollution) Act, 1977 in particular the licencing provisions of Sections 4 and 16.

PLANNING APPLICATIONS **BUILDING BYE-LAW APPLICATIONS** CLASS CLASS DESCRIPTION NO. DESCRIPTION FFF NO. FFF Provision of dwelling -- House/Flat. £32.00 each Dwelling (House/Flat) 1 £55.00 each Domestic extensions/other improvements, £16.00 В Domestic Extension Provision of agricultural buildings (See Regs.) 3 £40.00 minimum (improvement/alteration) £30.00 each Other buildings (i.e. offices, commercial, etc.) 4 Building - Office/ £1.75 per sq. metre C £3.50 per m² (Min. £40.00) Commercial Purposes (min. £70.00) 5. Use of land (Mining, deposit or waste) D £25.00 per 0.1 ha Aoricultural £1.00 per m² (Min £250.00) **Buildings/Structures** in excess of 6. Use of land (Camping, parking, storage) £25.00 per 0.1 ha (Min. £40.00) 300 sq. metres (min. - £70.00) 7. Provision of plant/machinery/tank or £25.00 per 0.1 ha (Max. - £300.00) Petrol Filling Station other structure for storage purposes. (Min. £100.00) Ε £200.00 Petrol Filling Station. 8 £100.00 Development or £9.00 per 0.1 ha 9 Advertising Structures. £10.00 per m2 Proposals not coming (£70.00 min.) (min £40.00) within any of the 10 Electricity transmission lines. £25.00 per 1,000m foregoing classes Min. Fee £30.00 (Min. £40.00) Any other development. 11. £5.00 per 0.1 ha Max. Fee £20,000 (Min. £40.00)

Cheques etc. should be made payable to: Dublin County Council

Gross Floor space is to be taken as the total floor space on each floor measured from the inside of the external walls. For full details of Fees and Exemptions see Local Government (Planning and Development) (Fees) Regulations 1984.

DUI	LIN COUNTY	COUNCIL	A CLIA	5.453444	a samé was an estan da		
		DUBLIN 1.			N 573	314	in in the second
		.1	And the second s				
		£4935	.00				
	_	1#		dav öt	Februa	1	9
ved this	a la desc	tries 10	intes L	10.	olie – Tibe Lori despera i Silie.	i de la companya de La companya de la co	is no aratis
MICKOM IN	g maios	/ / / / / / / / / / / / / / / / / / / /	*****************			-15 1 565.	ន់ នោះបានធ្វើធ្វើ ••• •៤៤, ក្រៀ
***************************************			**************************************		<u> </u>	a a sagaran da pagasa manggaran da pagasa	و در والاستواج و لياد والإيادة و المادة والايادة المحمدة و الأدارة
um of four	Itorea	ud via	e hund	NDO 0	thirty	TIVE P	ounds
um offrux	*novsa	ice, and	A	Pence, be	eina	200 K	jr H
bye-law		ation i	cet 16	v & Co	D. Na	as Eu	P.
bye-law.	uppu a	auo~	<u> </u>	A P a a separation in the second			
			**********	ر از از این	S. CAREY	Casi	
1600000	Dear	<u>C</u>	Cashier	and the second second	rincipal Office		77. 1. 20.00

rchitects

the ambrose kelly group

date

5 February 1992

ambrose kelly

chairman

our ref

KB/AF1/B031(001)

group architects paul keenan B. Arch (NUI) MRIAI michael j lyons B.A. Dip.Arch

patrick j reid B. Arch (NUI) MRIAI

technical director

bernard lynch Dip.Arch Tech RIAI(Tech)

your ref

Dublin County Council

Bye Law Department

Liffey House 24-28 Tara Street

Dublin 2

DARFW CORMAL OF A Planning Dupi Receiving Section APPLICATION OF CENTRED

C CHED 1992

REC NO.

BUILDING CONTRO -6 FEB 1992

RECEIVED

RE:

PROPOSED WAREHOUSE AND ASSOCIATED OFFICE **BUILDING AT FOX & GEESE, NAAS ROAD DUBLIN 22 FOR** PACKAGING INDUSTRIES LIMITED

Dear Sir

We wish to apply for Bye Law Approval for construction of a warehouse building with associated offices and production area to first floor and separate two storey office development to rear of existing buildings, on behalf of Packaging Industries Limited, Fox & Geese, Naas Road, Dublin 22.

We have received a Grant of Permission on this development under the Local Government (Planning and Development) Act 1963 - 1990. Grant Order No: P/5866/91. Date: 18 December 1991. Register Reference: 91A/1427.

Copy of the above Permission is enclosed.

Previous to this application, we have had meetings with both the Area Fire Officer and Road Engineer. In both meetings, the proposed development was tabled and discussed. All requirements from both parties have been fully incorporated into our application.

Cont/d...

Fleming Court, Fleming's Place, Dublin 4 Тејерћоле 01 607511 Гак 01 607620

Station House, Station Road, London SE20 7BE Telephone 081 659 1516 Fax 081 676 8955

Enclosed with our application is the following documentation:

- 1. Completed Application Form.
- 2. Cheque for the sum of £4,935.00 calculated on the following basis: 1410 sq m at £5.50 per m sq = £4,935.00.
- 3. 4 no. copies of drawings:

Architectural Drawings:

B031 (P1) 01 B031 (P1) 02 B031 (P1) 03	- - -	Floor Plans and Site Layout Elevations Sections, Elevations and Block Plan	1:200 1:100 1:100 1:1000
B031 (P1) 04 B031 (P1) 05 B031 (P1) 06	- -	Floor Plans to Warehouse Floor Plans to Offices Section CC and Details	1:100 1:100 1:50 1:50

Engineers Drawings:

9214-1 9214-2 9214-3 9214-4 9214-5 9214-6 9214-7	- - - - - -	Foundations Plan Part Sheet 1 Foundations Plan Part Sheet 2 Ground Floor Plan Part Sheet 1 Ground Floor Plan Part Sheet 2 First Floor Plan Roof Plan Part Sheet 1 Roof Plan Part Sheet 2
9214-7 9214-8		Roof Plan Part Sheet 2 Typical Sections through production buildings
9214-12 9214-13 9214-14	-	Office Building Ground Floor and Foundation Plans Office Building First Floor and Roof Plans Office Building Sections A-A B-B

Structural Calculations:

Structural Specifications

Blockwork Concrete Steel Timber

Cont/d...

Trusting that the information enclosed in our application is to your satisfaction. Should you require any further information, please do not hesitate to contact the undersigned at the above telephone number.

Yours faithfully

Kenneth Byrne Dipl.Arch.(Tech)
THE AMBROSE KELLY GROUP

Encl.

Dublin County Council Comhairle Chontae Atha Cliath Planning Department

Bloc 2, Ionad Bheatha na hEirear Bloc 2, Irish Life Centre, Sraid na Mainistreach lacht, Lower Abbey Street. Baile Atha Cliath 1. Dublin 1. Telephone (01) 724755 Fax (01) 724896

NOTIFICATION TO GRANT PERMISSION LOCAL GOVERNMENT (PLANNING AND DEVELOPMENT) ACTS 1963-1990.

Grant Order Number : P/ 5866 /91 Date of Grant : 18th December 1991

Decision Order Number: P/ 4832 /91 Date of Decision: 22nd October 1991

Register Reference : 91A/1427 Date Received : 30th August 1991

Applicant : Packaging Industries Limited

Development : Demolition of single storey residential unit to rear of

site, erection of single storey warehouse with

associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational

Location : Fox & Geese, Naas Road, Dublin 22

Additional Information Requested/Received:

Time Extension(s) up to and including :

A PERMISSION has been granted for the development described above, subject to the Conditions on the attached Numbered Pages.

NUMBER OF CONDITIONS:- ...ATTACHED.

signed on behalf of the Dublin County Council.... for Principal Officer

1 8 DEC 1991

APPROVAL of the Council under Building Bye-Laws must be obtained before the development is commenced and the terms of approval must be complied with in the carrying out of the work.

APPROVAL under the Building Bye Laws is not applicable to garden walls, entrances etc. APPROVAL under the Building Bye Laws cannot be obtained in respect of retention of work previously carried out.

The Ambrose Kelly Group, Fleming Court, Fleming's Place, Dublin 4

DUBLIN COUNTY COUNCIL Planning Dept Registry Section APPLICATION RECEIVED

0 6FEB 1992

REG No.

Dublin County Council Comhairle Chontae Atha Cliath Planning Department

Reg.Ref. 91A/1427

Decision Order No. P/ 4832 /91

Page No: 0002

Bloc 2, Ionad Bheatha na hEirear Bloc 2, Irish Life Centre, Sraid na Mainistreach Iacht, Lower Abbey Street. Baile Atha Cliath 1. Dublin 1. Telephone (01) 724755

01 The development to be carried out in its entirety in accordance with the plans, particulars and specifications lodged with the application save as may be required by the other conditions attached hereto.

REASON:To ensure that the development shall be in accordance with the permission and that effective control be maintained.

- 02 That before development commences, approval under the Building Bye- Laws be obtained and all conditions of that approval be observed in the development.
 - REASON: In order to comply with the sanitary services Acts, 1878-1964.
- 03 That the requirements of the Supervising Environmental Health Officer be ascertained and strictly adhered to in the development.

 REASON: In the interest of health.
- 04 That a financial contribution in the sum of £11384. be paid by the proposer to the Dublin County Council towards the cost of provision of public services in the area of the proposed development and which facilitate this development; this contribution to be paid before the commencement of development on the site.

REASON: The provision of such services in the area by the Council will facilitate the proposed development. It is considered reasonable that the developer should contribute towards the cost of providing the services.

- 05 That no advertising sign or structure be erected except those which are exempted development, without prior approval of Planning Authority.

 REASON: In the interest of the proper planning and development of the area.
- Of The applicant shall be responsible for improvements to the private side access lane serving the proposed development, including resurfacing and the provision of kerbing. Details in this regard, including a programme of implementation shall be submitted for the written agreement of the Planning Authority before any development commences.

NOTE: The applicant is advised to consult with the Council's Roads Department before submitting any proposals for compliance with this condition.

- 06 REASON: In the interest of the proper planning and development of the area.
- 07 The existing entrance off the Naas Road shall be closed off permanently before the occupation of the office or warehouse development permitted by this decision.
- 07 REASON: In the interest of the proper planning and development of the area.
- 08 Before any development commences the applicant shall submit, for the written agreement of the Planning Authority, proposals to discourage or avoid on-street car or lorry parking along the Naas Road frontage of the

Dublin County Council Comhairle Chontae Atha Cliath Planning Department

Bloc 2, Ionad Bheatha na hEirear Bloc 2, Irish Life Centre, Srald na Mainistreach lacht, Lower Abbey Street. Baile Atha Cliath 1. Dublin 1. Telephone (01) 724755 Fax (01) 724896

Reg.Ref. 91A/1427 Decision Order No. P/ 4832 /91

Page No: 0003 site.

08 REASON: In the interest of the proper planning and development of the area.

NOTE: Compliance with one or more of the conditions of this permission may result in material alterations to the development as initially proposed and, accordingly, may require the submission of a further planning application.

1 8 DEC 1991

PACKAGING INDUSTRIES LTD.

STRUCTURAL DRAWINGS LIST

9214-1	Foundations Plan Part Sheet 1
9214-2	Foundations Plan Part Sheet 2
9214-3	Ground Floor Plan Part Sheet 1
9214-4	Ground Floor Plan Part Sheet 2
9214-5	First Floor Plan
9214-6	Roof Plan Part Sheet 1
9214-7	Roof Plan Part Sheet 2
9214-8	Typical Sections through production buildings
9214-12	Office Building Ground Floor and Foundation Plans
9214-13	Office Building First Floor and Roof Plans
9214-14	Office Building Sections A-A B-B

DUBLIN COUNTY COUNCIL Planning Dept. Registry Section APPLICATION RECEIVED

C 6FEB 1992

REG No. ... 9/4/14.20....

DBFL

CONSULTING
CIVIL & STRUCTURAL

ENGINEERS

DUBLIN COUNTY OF THE PROPERTY OF THE PROPERTY

PACKAGING INDUSTRIES LTD.

STRUCTURAL SPECIFICATIONS

STRUCTURAL SPECIFICATIONS

BLOCKWORK

CONCRETE

STEEL

TIMBER

BLOCKWORK

SPECIFICATION FOR BLOCKWORK

GINERAL:

References herein to Irish, British or other National Standards of Practice do not give the year of issue or dates of amendment. The latest relevant published version including any relevant amendments at date of invitation to tender shall apply.

Where a Standard or Code of Practice has been superseded the latest edition of the superseding publication shall apply.

The preambles to the Bills of Quantities shall take precedence over the Standards and Codes of Practice referred to where those documents are at variance.

BLOCKWORK:

01. General

 All blockwork shall be carried out in accordance with IS325 & BS5628 unless otherwise specified herein or directed by the Architect.

02. Concrete Blocks

1. All blocks shall be in accordance with I.S.20 and shall be obtained from an approved manufacturer. They shall have a co-ordinating size of 450mm x 225mm and shall be as described on the Architect's drawings.

03. Dense Masonry

1. The dense masonry blocks shall be waterproofed dense concrete masonry blocks as manufactured by Messrs. Clondalkin Concrete Ltd., or other equal similar and approved complying with the requirements of I.S.20. The blocks shall be to selected colour or colours as directed by the Architect.

04. Handling and Storage

The blocks shall be off-loaded and moved to laying position mechanically. They shall be stored
off the ground and covered to protect from rain and dirt.

05. Certificates

 A manufacturer's certificate of the quality of the blocks shall be produced for all batches of blocks delivered to site.

06. Cement

The cement used in mortars shall be either Portland Cement to I.S.1. "Portland Cement", or Portland blast furnace cement to B.S.146, or sulphate resisting cement to B.S.4027. The use of high alumina cement is forbidden. Where masonry cements are permitted by the Architect in lieu of cement and lime they shall comply with the draft British Standard "Methods of Testing Mortars" and in any event they will not be permitted for mortar mixes stronger than 1:1:6 cement:lime:sand.

07. Lime

 Lime used in mortars shall be non-hydraulic (calcium) limes or semi-hydraulic (calcium) and magnesium limes to conform to the requirements of I.S.8.

08. Sand

 The sand shall be free from deleterious substances and shall comply with the requirements for quality and grading of sand for mortar given in B.S.1200.

09. Water

 Water shall be free from impurities harmful to the mortar. Where the quality of supply is doubtful the water shall be tested in accordance with B.S.3148.

10. Admixtures

Admixtures, may be used subject to the Architect's approval in writing.

11. Mortars

- A 1:1:6 (Cement:Lime:Sand) mortar shall generally be used in the superstructure. However where special conditions, either constructural or environmental prevail, attention must be given to the requirements of C.P.121, Clause 3.6 and Table 4.
- 2. The mortar mixes referred to in Table 4 are given in Table 6 of this Code. Any alternative mortar mix is subject to the Architect's written approval.
- 3. The mortar shall be water proofed and tinted if so required by the Architect. Special care shall be taken to maintain consistency of mortar.

12. Batching and Mixing of Mortars

- 1. The material for the mortar shall be measured accurately to conform with the specified mix proportions by weigh batching or by the use of gauge boxes.
- 2. The mortars shall be mixed by machine.
- 3. Mortars containing cements shall be used within two hours of the mixing of the cement and water and any mortar not then used shall be discarded and not re-tempered.

13. Filling of Cores, Etc

- 1. Where the cores of block walls are to be filled with concrete a 10mm aggregate concrete as elsewhere specified shall be used.
- 2 These cores shall be accurately lined up and be clean and clear of all protruding mortar etc.
- 3. The concrete shall be well tamped around the reinforcement to ensure that it is fully compacted.

14. Wall Ties

- Cavity wall ties shall be approved vertical twist dovetail stainless steel straps with stainless steel restraining pin to retain the insulation unless otherwise directed by the Architect.
- 2. Internal collar jointed walls shall be tied together with flat stainless steel ragged ended ties of cross sectional area over 200mm x 3mm at centres not exceeding those in the attached table.

15. Handling and Storage of Materials

- 1. Cement shall be stored to ensure that it is not affected by dampness prior to use.
- 2. Sand shall be stored separately according to type where it will not be contaminated.

- Reinforcement and ties shall be protected from becoming contaminated.
- 4. Facing blocks shall be carefully unloaded so as to avoid damage to the units. All blocks shall be stacked on prepared level areas to ensure that the stack is stable. Blocks used for fairfaced work shall be protected to prevent the exposed faces from becoming stained or marked. Precautions shall be taken to ensure that the manufacturer's recommended moisture content is not exceeded at the time of laying.

16. Testing of Blocks

 Independent testing of blocks shall be carried out in accordance with clause 17 of I.S.20.

17. Workmanship

- 1. All blockwork shall be set out and built to the respective dimensions, thickness and heights shown upon the drawings.
- All perpends, quoins, joints, etc., shall be kept strictly true and square, other angles shall be plumbed and the whole properly bonded or tied together and the bed joints levelled as the work proceeds.
- The blockwork shall be built to the bond indicated, on the drawings. Where no bond is indicated, the units shall be laid in stretcher bond.
- 4. Blocks used for facing shall be cut with a masonry saw. Where it is necessary to cut the blocks wet they shall be dried to the manufacturer's recommended moisture content before being built into the wall.
- The positions and size of the chasings shall be as indicated on the drawings and shall be carried out neatly using a chasing tool.
- 6. Concrete blocks should be used at a moisture content not exceeding the manufacturer's recommendations.
- 7. All painting of blockwork shall be carried out to the detail agreed with the Architect.
- 8. No block laying shall be carried out when the temperature is at or below 3 deg.C unless precautions are taken to ensure a minimum temperature of 4 deg.C in the work when laid and thereafter to maintain the temperature above freezing point until the mortar has hardened. Should any block wall be damaged by frost it shall be pulled down and made good at the contractor's expense. Walls shall, where necessary, be adequately braced during construction to prevent damage by winds or other causes.
- 9. Each block shall be laid and adjusted to its final position while the mortar is still plastic.
- 10. All blocks shall be laid on a full mortar bed. Vertical joints shall be filled. All joints are to be nominally 10mm thick.

- Any mortar which extrudes from the joint of fairfaced units shall be cut away and on no account is mortar to be smeared on to the face of the block.
- 12. The junctions of all walls shall be block bonded unless specified or directed otherwise by the Architect.

18. Control Joints

Control joints shall be constructed as indicated on the drawings or as directed by the Architect.
 Expansion joints shall be cleaned out to ensure that mortar does not bridge the joint.

19. Double Leaf (Cavity) Walls

 The walls shall be built with cavities of the width shown on the drawings and tied together with wall ties as specified embedded in the mortar at least 50mm. Unless otherwise detailed the wall ties shall be staggered in alternate courses and spaced in accordance with the following table.

<u>N</u>	MUMIXAN	SPACIN	G OF TIES	·
Leaf ness	Cavity	Width	Horizontally	Vertically

Thickness	Cavity Width	110/12-01 Hany	Vertioany
mm	mm	mm	mm
75 90 or more 90 or more	50-75 50-75 75-100	450 900 675	450 450 450
90 or more	100-150	450	450

- The spacing may be varied provided that the number of ties per unit area is maintained subject to the Architect's approval.
- Additional ties shall be provided in every course within 225mm of openings and on each side
 of control joints. Ties shall be laid falling to the external leaf.
- 4. Where a wall is constructed of two separate leaves with a 10mm vertical joint between them the spacing of the ties shall be 450mm both horizontally and vertically and the vertical joint shall be filled with mortar as the work proceeds.
- 5. The cavity, ties and cores (where they are to be filled with concrete) shall be kept clear and clean of mortar droppings or other materials during construction and any extruding mortar shall be struck off flush. No cavity shall be sealed off until inspected and approved by Architect.
- 6. Weepholes 10mm wide by 75mm high, spaced at centres not exceeding 900m and extending through the vertical mortar joints of the outer leaf shall be provided at ground level and at positions where the cavity is bridged or at locations indicated on the drawings.
- 7. Vent holes shall be of the dimension as for weepholes and shall be positioned at locations indicated on the drawings.

20. Partitions

Partitions shall not be built on suspended slabs until after the props have been removed.

21. Lintels

Concrete block lintels shall be positioned and reinforced in accordance with the details shown
on the drawings and shall have cavities filled with concrete as specified. The lintels are to be
propped during construction to the satisfaction of the Engineer. All lintels shall have a minimum
bearing length of 200mm unless otherwise detailed.

22. Protection

- Where necessary walls shall be temporarily braced to prevent damage from backfilling operations.
- The tops of constructed walls shall be protected from rain and in addition fairfaced work shall be protected against staining from construction activities.
- 3. At the completion of the work all temporary holes in mortar joints of fairfaced work shall be filled with mortar and suitably tooled. Any damaged blockwork shall be repaired with approved materials or replaced to the satisfaction of the Architect.

23. Sealing

Joints around door and window frames, control joints, abutting joints at external columns and other joints where sealing is indicated or required shall be brush painted with an approved primer and filled with an approved sealant of colour specified by the Architect, the whole of which shall be carried out in accordance with the manufacturer's recommendations.

24. Flashings

 Wall flashings shall be built into or secured to the blockwork in accordance with the details shown on the drawings. Care shall be taken to ensure that the flashing has adequate laps.

25. Chases

No chases shall be provided or cut in the blockwork
without the prior approval of the Architect. Where chases have to be cut, suitable power tools
which do not operate by heavy impact should be used. The depth of chase should not exceed
one-sixth of the thickness of a single leaf.

26. Damp Proofing

Horizontal damp-proof courses shall be provided at positions shown on the drawings and be positioned so as to fully cover the leaf thickness. All horizontal damp-proof courses shall be laid on an even bed of fresh mortar and eventually covered by mortar so as to maintain regular coursing and joint thickness and while exposed shall be protected from damage while the building is processing. Stepped damp-proof courses at openings shall extend beyond the end of the lintel by at least 100mm. All horizontal damp-proof courses shall protrude 10mm from the external face of the wall and be turned downwards. Vertical damp-proof courses shall be of adequate width and be fixed so as to separate the inner and outer leaves of the wall.

27. Backfilling

 Backfilling shall not be placed against concrete masonry walls within 14 days of completion of the construction unless otherwise directed by the Engineer. Vehicles shall not be operated closer to the wall than a distance equal to the height of the wall below ground level.

28. Stability During Construction

 Walls in the course of construction shall be propped by the contractor to ensure stability and to resist all lateral forces until such time as they have been adequately braced by the completed or partially completed structure.

29. Pointing of Blockwork

 Pointing should be carried out from the top of the wall downwards. The joints shall be well brushed to remove dust and loose material and should be lightly wetted using a brush. The type of pointing shall be as directed by the Architect.

30. Damp Proof Course

 Damp proof course shall be bitumen with hessian base and shall comply with I.S.57 pr equivalent unless otherwise directed by the Architect.

31. Sample Panels

 Sample panels of walling, if required by the Architect, shall be constructed in accordance with this specification at the commencement of work. These panels shall remain on site for the duration of the Contract unless otherwise directed by the Architect.

32. Tolerances for Blockwork

1. The following tolerances shall apply to blockwork except specified by the Architect.

<u>Level + 10mm</u> for dimensions to any nominally horizontal surface measured from the nearest reference level but not more than +3mm under a 3m straight edge.

Position on Plan + 10mm for dimensions to any nominally vertical surface at the lower edge measured horizontally from the nearest reference line.

<u>Plumbness</u> +5mm in any 1m but not more than 10mm except at window, door and other formed opes where a tolerance of +5mm in the height of the ope on any nominally vertical face shall not be exceeded.

<u>Cross-Section of Elements +5mm</u> unless otherwise indicated on the drawings or in this specification.

<u>Straightness</u> \pm 10mm measured horizontally at any level but not more than \pm 3mm under a 3m straight edge except where otherwise specified.

Joint Thickness (1) Horizontal joints - +3mm but not more than +10mm for the combined thickness in any 1m height for normal work. For unplastered blockwork exposed to view this tolerance shall be +1.5mm but not more than +5mm for the combined thickness in any 1m height.

(2) Vertical joints - +3mm but not more than + 10mm in any 3m length for normal work. For unplastered blockwork exposed to view this tolerance shall be +1.5mm but not more than +5mm for the combined thickness in any 3m length.

Openings in Blockwork Notwithstanding the tolerances stated elsewhere, the permissible deviation in the specified dimension of the opening shall be ± 5 mm.

Tolerance for Blocks

The tolerance applying to individual blocks shall be as follows:

 Length
 ± 3mm

 Height
 ± 3mm

 Thickness
 ± 2mm

CONCRETE WORK

SPECIFICATION FOR CONCRETE WORK

01 General

The materials, labour and workmanship in and connected with the execution of the concrete work shall be the best of their kind without regard to any trade terms. The Contractor shall employ a duly qualified person experienced in reinforced concrete construction to supervise the work. The quality of materials and the standard of workmanship for the reinforced concrete shall comply with the relevant Clauses of BS8110 with regard to all requirements not otherwise described in this preamble.

The Architect shall be afforded all reasonable opportunity and facility to inspect the materials and the manufacture of concrete and to take samples or to make any test.

- 2. The term "formwork" shall be deemed to include falsework.
- 3. References herein to Irish, British or other National Standards of Practice do not give the year of issue or dates of amendment. The latest relevant published version including any relevant amendments at date of invitation to tender shall apply.

Where a Standard or Code of Practice has been superseded the latest edition of the superseding publication shall apply.

- 4. The preambles to the Bills of Quantities shall take precedence over the Standards and Codes of Practice referred to where those documents are at variance.
- 5. Do not scale the drawings. Use dimensions figured on the drawings for setting out the works.

02 Tolerances for Finished Work

Where more than one tolerance may be applied, the more stringent tolerance shall be adhered to.

Pad Foundations, Strip Footings: the permissible deviation for concrete foundations shall be -

Plan Dimensions

<u>+</u>75mm

-25mm

Vertical Dimensions

+ 15mm

- Elements below ground level: The permissible dimensional deviations for structural concrete elements below ground level shall be as follows:-
 - Level For any nominally horizontal surface when measured from the nearest reference level +10mm.
- Position on Plan For the position of any nominally vertical surface at the lower edge when measured from the nearest reference line +5mm.
- Plumb The permissible deviation from plumb of the upper and lower edges of any nominally vertical length of the surface whichever is the smaller.
- iv Cross-Section of Elements The permissible deviation of cross-sectional dimensions of elements from those shown on the drawings shall be <u>+</u>5mm.
- V Deviations at Junctions the permissible deviation for abrupt changes in a nominally continuous surface at the junction of two concrete elements shall be <u>+5mm</u>. The permissible deviation from the specified relationship of any two surfaces at a junction shall be <u>+5mm</u>.
- vi Bow, Bulging and Local Irregularities The Permissible for bow, bulging and local irregularities in the surface of elements shall be 10mm measured from a 4m straight edge or 1 in 400 of the length of the element whichever is the smaller.
- Elements above ground level: The permissible deviation for structural concrete elements above ground level shall be as follows:-
- i Level For any nominally horizontal surface when measured from the nearest reference level <u>+3mm</u>.

In the particular case of floor slabs the deviation measured from a 3m straight edge shall not exceed this tolerance of 3mm.

- i Position on Plan For the position of any nominally vertical surface at the lower edge when measured from the nearest reference line +3mm.
- Plumb The permissible deviation from plumb of the upper and lower edges of any nominally vertical surface shall be <u>+</u> 10mm or 1 in 400 of the vertical length of the surface whichever is the smaller.

- PAGE 2 -

- iv Cross-Section of Elements The permissible deviation of cross-sectional dimensions of elements from those shown on the drawings shall be <u>+3m</u>.
 - Deviations at Junctions The permissible deviation for abrupt changes in a nominally continuous surface at the junction of two concrete elements shall be +3mm.

The permissible deviation from the specified relationship of any two surfaces at a junction shall be +5mm.

vi Bow, Bulging and Local Irregularities - The permissible deviation for bow, bulging and local irregularities in the surface of elements shall be +8mm measured from a 4m straight edge of 1 in 500 of the length of the element whichever is the smaller.

03 Cement

- The cement shall be ordinary Portland Cement complying in all respects with either Irish Standard No.1 or BS 12. The Contractor shall provide details of proposed cements for approval and shall not under any circumstances use unapproved cements. Manufacturer's test certificates shall be provided by the Contractor as required.
- 2. Cement delivered in standard bags shall be properly stored in a weatherproof shed with the floor raised above ground level and having a clear space of at least 225mm between the underside of the floor beams and the ground surface. Cement delivered in bulk in a tanker shall be properly stored in a silo of BS or IS approved design. Each consignment shall be kept separate, identified and used in order of delivery.
- Cement damaged in storage or handling shall not be used in the manufacturer of white concrete.

04 Aggregates

- 1. The aggregates for concrete shall consist of naturally occuring material complying in all respects with BS882 and IS No.5 (Note: the use of 'all-in' aggregates shall not be permitted). All aggregates shall be free from laminated, and/or flaky particles, dust, silt, clay and other impurities.
- The fine aggregates shall be washed natural pit or river sand, passing a 6mm sieve and shall be graded from the largest to the smallest particles sizes to the Architect's satisfaction.
- 3. The coarse aggregate shall be retained on a 6mm sieve and shall be composed of clean washed gravel or clean crushed hard stone. It shall be delivered to site in two sizes up to 19mm when maximum aggregate size of 19mm is used, and three sizes up to 38mm when a maximum aggregate size of 38mm is used.

- 4. The use of marine aggregates shall be excluded.
- 5. The chloride content of the aggregate shall be such that the total chloride content of the concrete mix shall not exceed 0.35% expressed as a percentage of chloride ion by weight of cement.
- The aggregates used for prestressed concrete shall be free from chloride.
- Aggregates shall be chosen such that the drying shrinkage of the concrete is minimised and conforms to the requirements of BS1881 Part 2.
- Special attention shall be given to the selection of aggregates to all exposed and waterproof concrete.
- 9. Before concreting operations are begun, samples of the aggregate shall be submitted to a laboratory, chosen by the Architect, for testing and approval. The weight of samples shall not be less than 15Kg for each size of coarse aggregate and 5Kg for the fine aggregate.
- 10. The quality of all aggregates delivered to the site shall be equal or superior to that of the approved samples.
- Separate storage facilities with adequate provision for drainage shall be provided for each different size of aggregate used.

05 Water

Water shall be clean and free from harmful matter and shall be of potable quality.

06 Admixture

 Admixtures other than those herein specified shall not be used without the written consent of the Architect. Under no circumstances shall calcium chloride be used as an additive in the concrete mix.

07 Mixing

The quantity of cement, the quantity of fine aggregates and the quantities of the various sizes
of coarse aggregate shall be measured by weight only. A separate weighing device shall be
provided for weighing the cement.

- The amount of water shall be measured by volume or weight. Any solid admixture to be added shall be measured by weight only, but liquid or paste admixtures shall be measured by volume or weight.
- 3. The batch weight of aggregates shall be adjusted for the moisture content of the aggregate being used. The quantity of water contained in the aggregates shall be determined by the Contractor in accordance with a method approved by the Architect, and the quantity of water to be added to the mix shall be reduced by the quantity of water contained in the aggregates being used.
- 4. The accuracy of all measuring equipment shall be within 3% of the quantity of cement, water or total aggregates being measured and within 5% of the quantity of any admixture being used. All measuring equipment shall be maintained by the Contractor in a clean, serviceable condition.
- 5. The mixer shall comply with the requirements of BS1305 or BS4251. The mixing time shall not be less than two minutes or the time necessary to ensure compliance with the required strength. When the mixer is a lorry mounted mixer complying with BS4251 no water shall be added at the batching plant or in transit to site.

08 Concrete Mixes

 The responsibility for producing concrete to the required strength is entirely that of the Contractor and he shall vary the cement content to achieve this strength. The minimum cement contents given in Table A are to provide a durable concrete for the various mixes.

NOTE:

Mix C35/20 is Grade 35 concrete with a minimum aggregate size of 20mm.

09 Ready-mixed Concrete

1. Ready-mixed concrete may be used on the basis of a designed mix, subject to the Architect's approval to the manufacturer and supplier. It shall be the Contractor's responsibility to ensure that his supplier shall fully comply with the specification and shall provide the Architect or his representative full co-operation and facilities for carrying out all inspection and testings that may be required.

- Deliveries shall be accompanied by delivery dockets for each batch of concrete and they shall contain the following information.
 - (i) Name of the Ready-Mix Plant.
 - (ii) Serial number of the delivery docket.
 - (iii) Date.
 - (iv) Delivery Truck Number.
 - (v) Name of Purchaser.
 - (vi) Name of Contract.
 - (vii) Specified Grade of Concrete.
 - (viii) Specified Workability.
 - (ix) Maximum Aggregate Size.
 - (x) Time of Loading at Ready-Mix Plant.

10 Testing of Concrete

- The quality of the concrete shall be verified by 28 day cube tests carried out in accordance with BS1881. Each cube shall be made from a single sample taken from a batch of concrete, Compliance with the specified strength may be assumed if ...
- (a) The average strength determined from any group of four consecutive cubes exceeds the specified strength by not less than 7.5N per sq.mm.
- (b) Each individual test is greater than 85 per cent of the specified characteristic strength grade (Table A).

11 Action to be taken in the event of Failure of Test Cubes

- 1. When the average strength of four consecutive test cubes fail to meet the first requirement, the mix proportions shall be adjusted to provide the specified strength. The responsibility of providing concrete which attains the specified strength is entirely that of the Contractor, and no adjustment of rates shall be permitted if additional cement is required to provide concrete with the specified strength.
- In the event of cube failures the cost of additional test and/or the replacement of any portions
 of concrete deemed to be defective by the Architect shall be borne by the Contractor.

12 Concrete Blinding

 The surface of the ground or hardcore under foundations and other concrete in contact with the ground or with hardcore shall be sealed with a layer of concrete Grade 10 (mix B Table A) average 50mm thick unless specified otherwise.

13 Jointing New Concrete

- 1. Treat the surface of the existing concrete at the joint before placing new concrete as follows ...
- (a) When the concrete is between 2 and 4 hours old, wet the surface with a fine spray (not a jet) and at the same time brush the mortar from the face of the joint without disturbing the coarse aggregate.
- (b) When the concrete is between 4 and 24 hours old and (a) has not been carried out, remove the mortar from the face of the joint with a wire brush or water jet without disturbing the coarse aggregate.
- (c) When the concrete is between 1 and 3 days old and (a) or (b) has not been carried out, remove the mortar from the face ofthe joint by grit blasting or with a needle gun without disturbing the coarse aggregate and wash off any dust from the surface. Do not hack or hammer the surface.

14 Construction

- All vertical construction joints shall be formed with well braced timber stop ends holed or slotted where necessary to allow the reinforcement to pass through the joints. The concrete shall be compacted against the stop end of the full height of the lift.
- The Contractor shall if required prepare a detailed layout of the construction joints for each section of the work, including details of all waterbars, which shall be submitted to the Architect for approval before any work commences.
- 3. The construction sequence shall be planned so as to minimise the number of construction joints as far as is practicable while limiting the shrinkage of the concrete.
- 4. The vertical joints shall be stepped and staggered in approved positions and such joints shall not be located at or adjacent to quoins.
- 5. Except where otherwise directed, the joints in ribbed floors shall be formed in the slab parallel to the ribs. The joints in floors shall be located in such positions as will minimise the number of joints required and shall run where possible parallel with the direction of span. In beams and suspended slabs an approved splayed or halving joint shall be provided.
- 6. Additional reinforcement shall be provided at joints where so directed by the Architects.
- 7. All kickers shall be cast monolithically with the base concrete.

16 Frost

- Concreting work shall be suspended when the air temperature falls below 2 deg. celsius or when frost is expected.
- Frozen aggregate shall be thawed out before use by the aid of approved equipment.
- 3. Concrete placed in cold weather shall be protected from damage by frost or other weather conditions until such time as it has achieved sufficient strength. Any damaged or weathered concrete shall be cut out and replaced by fresh concrete at the Contractor's expense.
- 4. The Contract shall provide a minimum and maximum thermometer of approved design for the purpose measuring the shade temperature of the outside air.

17 Curing

1. Horizontal and vertical slabs and other large areas of concrete shall be prevented from drying out for at least 7 days after the concrete has been placed. Precautions shall be taken during the initial period of at least 7 days to protect all reinforced work from exposure to sun, wind, rain and frost. Longer periods of curing and protection may be required during periods of low temperatures.

18 Traffic over Concrete

- No traffic or temporary load of any kind will be allowed over any concrete until the following minimum time after casting, unless approved protective methods are adopted to the Architect's satisfaction.
- (a) Foundations, ground floor slabs and other concrete in contact with the ground: 28 days

(b) Columns: 10 days

(c) Suspended slabs: 10 days

(d) Suspended beams: 14 days

These times are given for guidance only and do not relieve the Contractor of any responsibility for protecting the concrete work against damage from any cause whatsoever.

15 Horsing

- The Contractor if requested shall submit dimensioned drawings of the systems of falsework which he proposed to adopt for the various sections of the work. This falsework shall be suitably proportioned and braces to withstand the weight of the freshly placed concrete, together with the weight of the workmen and materials.
- 2. Where supported on the ground the sole piece carrying the vertical supports shall be bedded on a solid base and shall have an area sufficiently large to ensure that there shall be no settlement under the full load. Adjustable screws or hardwood folding wedges shall be used for adjusting and striking the vertical supports.
- 3. When supported on the ground floor slab a system of timber spreaders shall be used to distribute the load. Unless a screed is to be subsequently applied to the slab, special precautions shall be taken to protect the surface from any damage.
- 4. All shuttering shall be removed without shock or vibration. Before the shuttering is stripped the concrete shall be exposed in order to ascertain that the concrete has sufficiently hardened.
- 5. Shuttering to vertical sufaces may be removed whenever the concrete will not be damaged by so doing. Shuttering and supports under slabs, beams, girders, arches and structures carrying the loads, shall not be removed without the Architect's approval. The striking of the horsing shall be carried out in an approved sequence of operations so that no undue shock or other damage is caused to the permanent work.
- 6. The Contractor shall be responsible for any injury to work and any consequential damage caused or arising from the removal of striking of formwork, centering and supports, and any advice, permission or approval given relative to their removal shall not relieve the Contractor from the responsibility here defined.

20 Removal of Formwork

- The Contractor shall give the Architect no less than 24 hours notice of his intention to strike any formwork.
- 2. The time at which formwork is struck shall be the Contractor's responsibility but the minimum periods between concreting and the removal of forms, unless otherwise approved, shall be as stated in Table B. Days during which the average temperature is below 2 deg.C shall be disregarded in calculating the minimum time which shall elapse before forms are removed.
- 3. The stability of the structure and the protection of the concrete after striking the formwork shall remain the responsibility of the Contractor.

21 Formwork Generally

- 1. The design, erection and removal of formwork shall be the responsibility of the Contractor.
- 2. The formwork and supports and foundations shall be sufficiently rigid to resist without distortion or overstress all dead loads and incidental loads resulting from placing, vibration, etc. and they shall be designed taking into account the surface finish and tolerances required for the concrete.
- 3. The Contractor shall prepare full size setting-out sketches of the formwork for approval.

22 Mould Oil and Grease

- 1. All formwork shall be treated with approved mould oil or grease before use and shall be carefully cleaned down and further oiled or greased before re-use.
- The type of mould oil or grease and its method of application to be used for shuttering for exposed surfaces shall be as recommended by the manufacturer for this kind of work and shall be suject to the Architect's approval. The use of specially faced boards of plywood shall not be permitted except with the approval of the Architect.

23 Holes and Chases in Concrete

- 1. Holes, chases and other openings required for the passage of pipes, conduits, etc, shall be formed by inserting suitable sleeves, cores and sinkings before placing the concrete. The Contractor shall ensure that the Sub-Contractors furnish him full information in regard to the position of such opes and chases, that their size and position have been checked by the Sub-Contractor before concreting commences, and that they are adequately fixed in position to ensure that they do not move during the concreting operation.
- 2. The position of bolts, clips, holes or other openings in the finished work shall not be permitted without the sanction of the Architect. Such holes and chases shall be made only in approved locations and shall be cut with approved tools.

24 Classification of Finishes

1. Type A finish shall be used below ground level where the element is covered on each side by earth or filling.

- 2. Type B finish shall be used for all beam, columns, walls, slabs, stairs not exposed to view. It shall also apply to both the inside and outside faces of lift pit walls and ducts.
- 3. Type E finish shall be used for all beams, columns, walls, slabs, stairs and other concrete elements exposed to view.
- 4. Where a rendered or plastered finish is specified the concrete surfaces shall have a Type B finish and be treated to provide an adequate key. Alternatively the formwork may be coated with an approved retarding compound which shall be removed with water and wire brush as soon as possible after concreting. Precautions shall be taken to ensure that the retarding compound does not come in contact with reinforcement.

25 Quality of Finish

- The same type of formwork, formwork surface, release agent and curing compound shall be used throughout the entire area of any one specified finish. Individual plywood sheets, timber sections or small areas of formwork in large panels shall not be replaced in any location unless Type A finish has been specified. Formed surfaces of concrete not exposed in the completed works and not specified otherwise shall be free from honeycombing and excessive lipping and grout leakage.
- 2. Type A finish shall be achieved using closely-jointed sawn boards or patent steel forms as formwork. Formwork ties shall not remain in the finished concrete. Recesses left at ties shall be filled with a paste of cement and fine aggregate. The finished surface shall be free from voids, honeycombing, excessive grout loss or other large blemishes. Small blemishes caused by entrapped air or water may be expected.
- 3. Type B finish shall be achieved using closely-jointed wrought boards, plywood or metal panels in good condition arranged in a uniform pattern as formwork. Foam sealing strips fully compressed between formwork and concrete shall be used at all construction joints. Formwork ties shall not remain in the finished surface. The finished surface shall be free from voids, honeycombing, excessive grout loss or other large blemishes. Small blemishes caused by entrapped air or water may be expected. Recesses left at ties shall be filled with a paste of cement, white cement and fine aggregate to match the colour of the concrete.
- 4. Type E finish shall be achieved using plywood with a hard smooth surface without defects, in 'as new' condition and arranged in large sheets. Construction and day joints and all formwork joints shall be located and aligned to the satisfaction of the Architect.

Loose hardwood tongues shall be used between all plywood sheets and foam sealing strips fully compressed between formwork and concrete shall be used at all construction joints.

Formwork shall be effectively watertight. Formwork ties shall be arranged in a uniform pattern as directed by the Architect and shall be provided with rubber cones against the formwork so that a neat recess about 50mm diameter x 40mm deep is at the tie after stripping. The recess shall be treated as a minor surface blemish.

The concrete surface shall be smooth, free from honeycombing lipping and grout loss, shall have true clean arrises and shall be of uniform colour and texture. Only very minor surface blemishes shall be permitted.

While the concrete is still green all surface blemishes shall be filled with a fresh, specially prepared paste of cement, white cement and fine aggregate to match the colour of the concrete. After curing, the blemishes and surface where necessary shall be rubbed down with a fine carborundum stone to produce a smooth even surface.

In the case of ribbed and waffled slabs exposed to view an approved G.R.P. or polypropylene mould which shall be temporarily supported by an approved system compatible with the mould shall be used.

Joints between adjacent moulds shall be featured in the manner indicated on the Architect's drawings and the Contractor shall prepare a detailed scheme, for approval, by which this feature may be achieved.

Removal of moulds shall be achieved by the use of compressed air carried out strictly in accordance with the manufacturer's instructions.

26 Finish to tops of Slabs

- 1. The tops of all concrete slabs shall receive a finish which shall be compatible in all respects with any subsequent topping.
- In the case of all roof slabs, unless specifically instructed by the Architect, the full thickness of the slab including any build up to achieve falls shall be carried out in a single concreting operation.
- 3. Where a slab is to receive a bonded screed at a subsequent stage, a tamped finish to the top surface shall be provided.
- 4. Where a floated finish is required the finished surface shall be free of float marks. The surface shall not be wetted nor shall additional cement be used to assist surface working.

27 Test Samples of Type E Finish

1. A test sample, of a size to be specified by the Architect, shall be prepared by the Contractor for the Architect's approval for each different element requiring a Type E finish, i.e. column, wall, beam, slab, etc. These samples shall be prepared in accordance with the specification and shall remain on site for the duration for the Contract unless otherwise directed by the Architect.

28 Reinforcement

- Rolled mild steel bars, cold twisted bars and high tensile fabric reinforcement shall comply with the requirements of BS4449, 4461 and 4483 respectively. The Contractor shall deliver, free of charge, samples of the various reinforcements for testing as directed. Any consignment or reinforcement failing to comply with the tests shall be removed from site.
- 2. The sizes and other dimensions of the reinforcement shall be checked against the drawings and site dimensions before the material is ordered.
- The reinforcement shall be cut, cold bent and hooked to the dimensions shown on the drawings and schedules or to such other dimensions as may be directed.
- 4. No alteration of substitution shall be made in the lengths, sizes or arrangement of the reinforcement, without the prior written approval of the Architect.
- 5. Annealed iron tying wire not less than 1.4mm diameter shall be used.

29 Fixing Reinforcement

- 1. The Contractor shall provide at his own expense all spacers and stools necessary to support the reinforcement in position. These spacers shall not crush or deform and shall maintain the correct cover to the reinforcement at all times. Special spacers to support reinforcement shall be used where such are shown on the drawings and schedules.
- The type of spacer for concrete exposed to view must be approved by the Architect before fixing commences and such approval may not be given until a test sample of cast concrete has been examined.
- Galvanised reinforcement shall be fixed with galvanised tying wire.
- 4. No metal part of any device for fixing reinforcement shall remain within the concrete provided for cover to the reinforcement, unless otherwise shown on the drawings.

30 Cutting and Bending

- Reinforcement shall be cut and bent in accordance with BS4466 and the schedule provided.
- High yield reinforcement shall not be cold bent when the air shade temperature is below 5
 deg.C. Mild steel reinforcement shall not be cold bent whent he air temperature is below 0
 deg.C.
- Cold worked steel reinforcement shall not be heated.

31 Waterproof Concrete Construction

- The following locations, and elsewhere as indicated by the Architect, shall be considered as waterpoof concrete construction and in these cases compliance with BS5337 in addition to CP110 and this specification shall be maintained -
 - (i) Any underground service ducts.
- 2. Formwork ties in these area shall be of a type and quality suitable for use in water retaining work.
- 3. All horizontal and vertical construction joints shall include an approved waterbar as shown on the drawings unless specifically indicated otherwise.

32 Watertightness Testing

- 1. Tests shall be carried out on all waterproof concrete elements as directed by the Architect.
- Accessible faces of concrete elements including roofs shall show no sign of leakage when the structure is tested for watertightness and at any subsequent stage.
- 3. The drop in the surface level of water retained by concrete elements with inaccessible faces shall not exceed 10mm in seven days when the structure is tested for watertightness.
- 4. Should any element prove to be unsatisfactory when tested for watertightness or at any subsequent stage they shall be made good at the Contractor's own expense to the satisfaction of the Architect.

33 Services through Walls and Floors of Waterproof Structures

- 1. When it is necessary for a pipe or other duct to pass through a wall or floor these shall be cast into the panel when it is concreted unless otherwise approved by the Architect. Puddle flanges shall be provided on all such penetrations.
- 2. If approval to pass the pipe through the construction at a later stage has been obtained then these opes shall be boxed out and the sides of the opening shall be treated as construction joints. The pipes which are later passed through the opening shall be fitted with puddle flanges. The side of the ope shall not coincide with any construction joints.

34 Inspection of Concrete Work

- The Contractor shall provide the Architect full facilities for the inspection of the horsing, formwork and reinforcement at all times throughout the duration of the contract.
- 2. Due notice shall be given to the Architect so that each element can be inspected to the satisfaction of the Architect.
- 3. No Concreting shall commence until the formwork and reinforcement have been approved by the Architects.
- 4. Any additional work to be done to the horsing, formwork and reinforcement to satisfy the Architect shall be carried out at the Contractor's expense. No claims for delay or disruption due to such additional work shall be entertained.

35 Sequence of Construction

1. The sequence of concrete construction shall be subject to the approval of the Architect. It shall be arranged in such a way as to minimise the effects of differential shrinkage, deflection, settlement and thermal effect. The Contractor shall therefore arrange his concreting programme as far as possible in such a way that the structural elements and foundations are uniformly loaded and the load is uniformly increased. Particular attention shall be given to junctions of blocks and expansion joints.

TABLE A

MIX REF.	MIX	MINIMUM CEMENT CONTENT	SLUMF	LOCATION
A	C20/40	220	25-75	Bedding & Surround to Sewers.
В	C10/20	180	25-75	Blinding Generally
С	C35/20	330	25-75	Foundations, Rising walls walls and insitu superstructure. Supsended insitu floor slabs. Generally including Ground Floor Slabs.
D	C25/20	275	25-75	Manholes, Arches to Sewers Anchor Blocks.
E	C35/10	350	25/125	Blockwork Filling
F	C35/10	350	25/75	Structural Screeds
G	C40/20	350	25/75	Precast Concrete Elements
			<u> </u>	1

LOCATION

MINIMUM PERIOD

Surface Temperature of Concrete

Cold Weather Normal Weather 2 deg. - 5 deg.C 16 deg.C

	DAYS	<u>DAYS</u>	
Sides of Beams Walls and Columns	2	1	 -
Slab soffit forms (props left under)	10	4	
Beam soffit forms (props left under)	14	8	
Props to slabs	21	11	
Props to beams	28	16	

STRUCTURAL STEEL

SPECIFICATION FOR STRUCTURAL STEELWORK

01 Steelwork Generally

- 1. All steelwork shall be in accordance with the requirements of B.S. 5950: Part 2: 1985.
- Steelwork generally shall comply with BCSA Publication No.1/89 National Structural Steelwork Specification for Building Construction. It shall be assumed that the Steelwork Contractor is familiar with this publication.

02 Workshop and Erection Drawing

- 1. The Structural Steelwork Contractor shall prepare all the necessary workshop drawings and shall submit for approval all drawings in duplicate to the Architect or his representative for checking. One copy of each drawing will be returned to the Structural Steelwork Contractor. The Structural Steelwork Contractor shall, before commencing fabrication, provide two sets of the approved drawings for the Architect or his representative.
- 2. The Structural Steelwork Contractor shall not commence the fabrication of any part of the work until approval to the workshop drawings have been given.

03 Programme of Supply

 The Structural Steelwork Contractor shall arrange his programme of fabrication, delivery and erection in consultation and agreement with the General Contractor and shall be prepared to amend this programme if required to do so by the General Contractor.

04 Cladding

 The Structural Steelwork Contractor shall throughout the fabrication and erection period cooperate and consult with the Roofing Contractor.

05 Site Connections

 All site connections shall be bolted unless noted otherwise on the drawings. The Structural Steelwork Contractor shall arrange to have an adequate supply of electric power where site welding is necessary.

06 Welding

1. All welding practice shall conform to the standards of B.S. 5135: 1974.

07 Welding Electrodes

- Rutile electrodes to B.S. 639 Classification E.21 or E.31 or low hydrogen electrodes to B.S. 639 Classification E.616 can be used. The electrodes should conform to B.S. 639:1976 Sections 1 and 2.
- All electrodes shall be handled and stored with care to avoid damage; electrodes with damaged coatings must not be used and the manufacturer's instructions regarding protection and storage must be followed.
- 3. Where low hydrogen electrodes are being used, they must be oven dried immediately prior to use in the manner recommended by the electrode manufacturer. The manufacturer's instructions regarding current (AC or DC) and polarity should be followed.

08 Specification

 The Structural Steelwork Contractor shall provide for the Architect's or his representative's approval a written specification of the type of electrodes and welding procedure he proposes to adopt.

09 Testing of Welders

1. Every welding operator, before he carries out any welding in this Contract, shall pass or have passed such qualifying tests which in the opinion of the Architect or his representative will prove his competence in carrying out the welding. Welders shall be tested to meet the requirements of B.S. 4872: Part 1.

10 Testing and Examination of Welds

- The Architect may appoint a specialist representative to supervise and check the welding and fabrication and the Contractor shall provide all the necessary facilities for the examination of the welding.
- Any welding considered by the Architect to be unsatisfactory shall be rejected and the cost of replacing any such rejected material will be borne by the Contractor.

11 Splices

1. No splices of any description shall be used in any member without the written approval of the Architect.

12 Arrangement of Members to be Welded

All members to be welded shall be held in their correct position by jigs, bolts or clamps. The
assembly of work to be welded shall be arranged so that whenever possible the work shall be
done in a downhand position.

13 Preheating

 The requirements of B.S. 5135: 1974 shall apply to all welded joints in this Contract, wherever they may be made. The minimum area over which-local preheating shall be effective shall in all cases be an area extending at least three inches or four times the thickness of the thicker part to be joined.

14 Inspection of Fabricated Steelwork

The Architect or his representative shall have access at all times to the Structural Steelwork
Contractor's workshop for the purpose of inspecting the steelwork. Any steelwork found to be
unsatisfactory at workshop inspection or subsequent inspection shall be rejected and replaced
at the Structural Steelwork Contractor's expense.

15 Surface Preparation of Steelwork

- 1. All Steelwork shall be shot-blasted to B.S. 4232 : Second Quality or Swedish Standard Sa 2.5 (maximum surface profile 100 microns).
- 2. After shot-blasting remove all traces of loose rust, grit etc. by compressed air hose or careful clean dry brushing. Remove all laminations by careful grinding leaving the surface smooth.

16 Blast Priming

1. Priming of the clean blast steel should be carried out within 2 hours of shot-blast. The blast primer shall be a 2-pack epoxy zinc rich primer applied by airless spray to give a minimum dry film thickness of 20 microns.

17 Site Holding Primer

- 1. After fabrication carefully remove all weld spatter, rough edges etc. by grinding, chipping and scraping, and grind to a smooth surface. Remove any unsound primer around weld areas.
- 2. The site holding primer shall be a 2-pack epoxy zinc rich primer applied by airless spray to give a minimum dry film thickness of 30 microns for interior steel and 50 microns for exterior steel.

18 Patch Priming after Erection

 After erection all site contaminants shall be removed and the steelwork shall be patch primer if required with the specified primer. All nuts and bolts shall be degreased and coated with one coat of the primer.

19 Holding Down Bolts

 The Structural Steelwork Contractor shall provide all necessary holding down bolts as shown on the drawings and the rates shall include for the supply and delivery of these bolts in advance of the delivery of the steelwork.

20 Erection of Steelwork

- The Structural Steelwork Contractor shall check the position, setting out and levels of all holding down bolts before erection has commenced and any difference in level or levels from those shown on the Contract Drawings shall be brought to the immediate notice of the Architect.
- The Structural Steelwork Contractor shall provide all the plant necessary for the erection of the steelwork but he shall submit a list and description of the plant he proposes to use to the Architect.

21 Bolting

- 1. Unless specified otherwise all bolts and nuts shall be electrogalvanised 8.8 Grade Black Bolts to B.S. 3692. All threads shall comply with B.S. 84 "Screw Threads of Whitworth Form". Washers shall be tapered whenever necessary to give the head and nut a true bearing.
- 2. All bolts shall be provided with steel washers under the nut and sufficient washer shall always be used to have the threaded portion of the bolt clear of the parent metal.
- All bolt shanks shall project at least one thread beyond the nut.
- 4. All nuts shall be Grade 8.8.

22 Temporary Bracing

 The Structural Steelwork Contractor shall provide all necessary temporary bracing and strutting to resist erection forces and wind forces and any other temporary bracing or strutting as required by the Architect until the roof covering has been completely erected.

23 Additional Holes

Any additional holes required shall be drilled on site. Burning holes in steelwork is not permitted.
 No holes will be drilled until approval for such holes has been given by the Architect.

24 Stacking of Steelwork

 When stacking the fabricated steelwork before delivery the Structural Steelwork Contractor shall ensure that sufficient timber shims are placed between members to avoid undue bowing of the members. He shall also ensure that the steelwork is carefully unloaded and stored on site prior to erection. STRUCTURAL TIMBER

SPECIFICATION FOR STRUCTURAL TIMBERWORK

01 CODES OF PRACTICE

- Unless otherwise specified where reference is made to standards and codes of practice, the current version as published on the date of this Bill, including any amendments, shall apply.
- 2. Structural timber shall comply with C.P.112, Part 2 and laminated rafters shall in addition comply with B.S. 4169.

02 SPECIALIST SUPPLIERS

1. The contractor shall nominate specialist suppliers for the laminated members. The appointment of these suppliers shall be subject to the Architect's approval.

03 FUNCTIONS OF THE MAIN CONTRACTOR AND SUPPLIER OF LAMINATED MEMBERS

- 1. The supplier of the laminated members shall supply and deliver all timber sections in plain pieces of adequate length.
- 2. The main contractor shall erect these members on site in accordance with this specification.

04 TERMINOLOGY AND SPECIES NAMES

 Timber terms are those of B.S. 565 and timber species are the standard names in B.S. 881 and 589.

05 TYPE AND GRADE OF TIMBER TO BE USED

- General structural timber shall fall within group species S2 in accordance with Table 9 C.P. 112
 and shall be stress graded to SS Grade in accordance with B.S. 4978 "Timber Grades for
 Structural Use" irrespective of any other grading carried out at source.
- Laminated beams shall be formed with laminations graded LB in accordance with B.S. 4978 or Appendix A, C.P. 112: Part 2, and each member shall be manufactured from single grade laminations.

06 MARKING OF TIMBER

 The species group and stress grade shall be marked on all timber. All timber re-sawn from stress graded stock shall be regraded before use.

07 DIMENSIONS

1. Timber dimensions in general, which are shown on the drawings or referred to elsewhere, shall be basic sawn sizes unless otherwise indicated or where the details dictated otherwise. In particular member sizes shown for all laminated beams are finished sizes.

08 TOLERANCES

1. The permissible dimensional deviations for timber work generally shall be as specified in C.P. 112: Part 2, Clause A4, and B.S. 4471: Part 1.

09 PLANE AND REGULARISED TIMBER

- 1. Reductions from basic sawn sizes and permissible deviations shall be as given in B.S.4471.
- 2. After planing, softwood already graded to B.S. 4978 shall be re-marked in accordance with paragraph 12 of that standard.

10 FINISH TO TIMBER

- 1. All timber exposed to view shall be planed and sanded on four sides prior to fabrication. In the case of laminated beams all machining is to be done after gluing. No cutter or sanding marks are permissible. In exposed surfaces voids shall be filled, glued inserts shall be selected with care to match grain and colour.
- 2. Outside laminations shall be free from loose knots and open knot holes. The timber for outside laminations shall be selected with reasonable care to match colour and grain at edge points.

11 LIMITS TO DEFECTS FOR CONSTRUCTIONAL PURPOSES

 In the process of assembly and construction, the appropriate stress graded softwood shall be selected so that no defect permitted by such grading prejudices the strength of the completed structure at bearing joints and other assemblies.

12 LIMITS TO DISTORTION

 Any piece which is bowed, sprung, twisted or cupped in excess of the limits set out in B.S. 4169 shall be rejected.

13 PRESERVATIVE TREATMENT

- Timber members shall be pressure impregnated with an approved preservative applied in accordance with the recommendations of B.S. 5268: Part 5 "Preservation Treatment for Construction Timbers".
- 2. In the case of laminated beams and other exposed timbers, the Architect's approval shall be obtained before the application of the preservatives.
- 3. Where further cutting is required to previously treated compounds, preservative shall be applied to those ares so cut to ensure that the entire member is treated before incorporation in the works.

14 COMPATIBILITY OF PRESERVATIVE AND GLUE

1. The contractor shall ensure the compatibility of the preservative, glue and structural timbers retardant coating and he shall also ensure that no corrosive effects to metal plates, connectors or bolts shall result from their use.

15 MOISTURE CONTENT

The moisture content at the time of fabrication of the laminated beams shall not exceed 18% and shall comply with the glue manufacturer's recommendations. Adequate measures shall be taken to ensure that the moisture content of the laminated beams does not rise above 20% during transportation, storage or erection.

16 JOINTING OF LAMINATIONS

- 1. End jointing of individual laminations shall be carried out using finger-joints or scarf-joints. No butt jointing of laminations shall be used. The jointing shall be staggered so that coinciding joints shall be separated by two full laminations.
- 2. The efficiency rating of the joint should be at least 0.75.

17 GLUE

 The glue to be used shall be of Type WBP in accordance with B.S. 1204: Part 1. Care shall be taken to ensure that the glue is stored, mixed and spread strictly in accordance with the glue manufacturers' instructions.

18 SURFACES TO BE GLUED

 All surfaces to be-glued shall be clean and free from dirt, dust, sawdust, oil and any other contaminating substances. Surfaces should be glued as soon as possible after they have been prepared. The surfaces to be joined shall be flat and any unevenness on them should not exceed 0.4mm in depth or height.

19 CURING PERIOD

1. All laminated member shall be stored at a suitable temperature for the curing period in accordance with the glue manufacturers' instructions.

20 WORKS APPLIED PROTECTIVE COAT

 After curing, the laminated beams should be given one protective coat of varnish, to be approved by the Architect.

21 PROTECTION AND STORAGE OF STRUCTURAL TIMBER

1. Timber members shall at all times, be protected from damage, staining, decay, insect attack and avoidable exposure to the weather.

22 PROTECTION AND STORAGE OF STRUCTURAL TIMBER

- 1. The contractor shall prepare a level clean site for the storage of the timber members.
- 2. The members shall be stacked on timber shims such that no bowing or damage takes place and they shall be protected against exposure to rain and extremes of temperature.

23 PROTECTION AND STORAGE OF LAMINATED BEAMS

- All steel plates required in the roof construction shall be hot dip galvanised to B.S. 729.
- 2. All steel bolts shall be electrogalvanised to B.S. 3383 : Part 2 unless specified otherwise.

24 INSPECTION OF TIMBER MEMBERS

- The contractor shall afford the Architect or his representative every assistance in the inspection
 of timber members during all stages of fabrication and erection. Any member found to be, or
 suspected of being defective, shall be replaced or test loaded to the Architect's satisfaction at
 the contractor's own expense.
- The contractor shall keep an approved type of moisture meter in his works for the control of the moisture content and for the use of the Architect at the time of inspection.

25 TESTING OF MEMBERS

 The Architect may require sample members to be test loaded to confirm the adequacy and compliance with specification. Such testing where required shall be carried out by the contractor, or approved testing authority, in accordance with the relevant code of practice and to the Architect's satisfaction.

26 HANDLING OF MEMBERS

- Care shall be taken at all times to ensure that the members suffer no damage or overstressing while they are being loaded, unloaded or lifted into position. Special care shall be taken to avoid damage to the sides and arrisses of members by lifting slings.
- In all cases the suppliers' recommendations shall be sought and complied with as a minimum precaution.

27 ERECTION OF MEMBERS

 The contractor shall at all times have a competent foreman in charge of the erection of the timber members who shall ensure that the work is carried out in accordance with the drawings, the aforementioned specifications and the suppliers recommendations. Any irregularities or inconsistencies shall be brought to the Architect's attention.

28 TEMPORARY BRACING

The contractor shall be responsible for the stability of the partially completed structure. He shall provide and fix, in addition to the permanent bracing, any temporary bracing necessary for the stability of the partially completed structure. He shall arrange his programme of erection so that no part of the structure is unduly exposed to possible loading in an unpropped or partially propped state.

DBFL

CONSULTING

CIVIL & STRUCTURAL

ENGINEERS

PACKAGING INDUSTRIES LTD.

STRUCTURAL CALCULATIONS

OFFICES

CALCULATION SHEET	Page No.	Project No. 9214
Project PACKAGING INDUSTRIES LE	By JH.	Chd.
Section OFFICE BUILDING	Date	Dote

{

PACKAGING INDUSTRIES	LTD.
FOX AND GEESE NAAS	ROAD
OFFICE BUILDING CAL	CULATIONS.
CONTENTS	PAGE
LOADING	0B1 - 0B2
	DPZ - DP/
CONCRETE SLAB AND STAIRS	OB3 - OB6
WANS VERTICAL LOADING	0B7 - 0B13
WAUS WIND LOADING	OB14 - OB19
FOUNDATIONS.	0B20 - 0B23
ROOF	OB24 - OB27.
•	
1	

CALCULATION SHEET	Poge No.	Project No.
Project PACKAGE INDUSTRIES LTD.	By JM	Chd.
Section	Date	Dote
LOADINGS.	JAN 1992	

1 - 4 - 1 - 1 -			
LOADING	<u> </u>		
Roof		KN/M2	
	Ì		
CONCRETE TILES	0.5 x 1/cos 27.5	0.563	
BATTENS + FELT	0.05 x 1/6527.5	0.056	
TRUSSED RAFTERS	(ASSUMED)	01140	
INSULATION		0.020	
PLASTERBOARD + SK	~	0.20	
SERVICES		0.15	
		1.129	
			
IMPOSED 0.75 roo	of + 0.25 ATTIC	1.00	
	· · · · · · · · · · · · · · · · · · ·		
		2.129	
			
ULTIMATE (1.4 XI.)	$(79 + 1.6 \times 1.0) = 3.1$	8 Km/m2	
	129 + 1.6 × 1.0) = 3.1	8 Km/m2	
FIRST FLOOR			
FIRST FLOOR 275 CONC SLATS		6.60	
FIRST FLOOR 275 CONC SUARS CEILING		6.60	
FIRST FLOOR 275 CONC SLATS		6.60	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES		6.60	
FIRST FLOOR 275 CONC SUARS CEILING		6.60	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES		6.60 0.20 0.15 6.350	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES		6.60	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES		6.60 0.20 0.15 6.350	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES		6.60 0.20 0.15 6.350	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES IM POSED 2.5 floor	- + 1.0 PARTITIONS	6.60 0.20 0.15 6.350 3.500	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES IM POSED 2.5 floor		6.60 0.20 0.15 6.350 3.500	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES IM POSED 2.5 floor	- + 1.0 PARTITIONS	6.60 0.20 0.15 6.350 3.500	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES IM POSED 2.5 floor	- + 1.0 PARTITIONS	6.60 0.20 0.15 6.350 3.500	
FIRST FLOOR 275 CONC SLATS CEILING SERVICES IM POSED 2.5 floor	- + 1.0 PARTITIONS	6.60 0.20 0.15 6.350 3.500	

			n Div	
CALCULATION SHEET	Page No.	Project No.	425	
Project	. Ву	Chd.	CONSULTING	
Section	Date	Date	ÇIVIL & STRUCTURAL	
- Contract			ENGINEERS	

WALLS (CHARACTERISTIC LOAD PERM2)	
WAWS (CHRICACTERS TIC WAY POLL M)	
215 100 100 100	
215 150 100 100	
	-
1 2.2 Kn/m² 1 2.2 Kn/m²	
5.28 KN/M² 2.75 KN/M²	
100	
2.5	
T T	
5.83 Km/m² 3.3 Km/m²	
, 3,63 red /rg	
	, , , , , , , , , , , , , , , , , , ,
	<u> </u>
:	

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

DESIGN OF FIRST FLOOR CONCRETE SLAB	
MAXIMUM SPAN FOR FIRST FLOOR SLAB	-
= 6.985 M (SEE NEXT PAGE)	
MAXIMUM BENDING MOMENT =	
15.33 × 6.985 = 93.49 KNM	
8	
SELTION DESIGN.	
d = 275 - 25 - 10 = 240	
$K = 93.49 \times 10^6 = 0.046 laf = 0.94$	7
1000 × 248 × 35	
	_
As regd = 93.49 × 106 = 1028 mm ² 0.87 × 460 × 240(0.947)	,
0.87 × 460 × 240(0.547)	
TRY T20 D 175 CTS = 1800 mm 2	
	<u> </u>
CHECK DEPLECTION	M/bd2
,	= 1-623
L= 5 × 460 × 1028 = 164	= 1.003
8 × 1800	
8 1 1 0 0	
M.F. = 0.55 + (477 - 164) = 1.583	
120(0.9+1.623)	1
	;
ALLOWABLE SPAN = 240 × 20 × 1.583	:
= 7598	
7598 > 6985 : 275 SUAB WITH T20 20 175	ces
SATISFACTORY	
•	

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

FOR REMAINDER OF FIRST FLOOR SLAB
SUAB THICKNESS WILL BE REDUCED TO
200 mm.
MAXIMUM SPAN = 3.5M
REVISED LOADING = 15.33 - (0.075 x 24 x 1.4)
REVISED LEADING = 13:33 (013)
= 12.81 KN/M2
MAXIMUM BENDING MOMENT
= 12.81 × 3.5 ² = 19.61
8
By INSPECTION TIGO ISOUTS SATISFACTORY
STARS.
WI DOW WE DE
STAIRS
= 7.17 KN/M2
ITS IMPOSED
IMPOSED IMPOSED
K. = 34.6° = 2.5 Km/m²
4075 450
Span.

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

and the second s	277
ULTIMATE LOADT = 1.4 x7.17 + 1.6 x2.5	
= 14.038	
1444 12 22 24 24 25 27	
MAX BENDING MOMENT = 14,038 X 4,075	WL/10
10	,
= 23.31 KNM	24
- 23:21 NNM	
SECTION DESIGN	
$K = 23.31 \times 10^6$ $d = 175 - 25 - 8$	
1000 × 142~ × 35 = 142	
= 0, 033	
7 110 (00) - 120	·
Z = 142(0.95) = 135 Asreal = 23.31 × 106	
0.87x460 x13,5	. [
· · · · · · · · · · · · · · · · · · ·	
= 43 mm2	
Ta MM	
use TI6 2 200 As = 1010 mm2	
DEFLECTION	
- C-CCC (10A)	<u> </u>
· · · · · · · · · · · · · · · · · · ·	M/Pd2
$f_3 = 5 \times 460 \times 43 = 122$	= 1.156
8 × 1010	
1 2	
14 = (42) - 122	
M.F. = 0.55+ (47)-122) = 1,988	
120(0.9+1.156)	
AUGNABLE SPAN = 20×142×1.988 = 5645	* **
10000000 SYNN - 100 > 1475 - 2047	
A Principal Control of the Control o	
5645 > 4075 SATISFACTORY	
J	
	1
The state of the s	
,	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. <u></u>

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

WAUS - VERTICAL LOADING CASE!	<u> </u>	<u> </u>
CHECK THIS LONGTH.		
<u> </u>		
1125 1000		
LOADING		
WIDTH = 1563		
LOADING	·	
	KN.	
Reof	- 	-
1.129 X1.4 X 4.0 X1.563	9.88	8)=1,4Gk
1.00 X1.6 X 4.0 X 1.563	10.00	=1.6QK.
WAU IST -> ROOF		
1.15 × 1.4 × 2.5 × 1.563	15.04	
IST FLOOR SLAB		
15.33 x 6.985(6.5) × 1.563	83.68	
WIHOOW HEAD	<u> </u>	
5.2 ×1.4 ×0.562 ×0.45	1.87	
WAN SELF WT.		
5.0% X1.4 X 1.5 X 1.00	18.48	•
TOTAL LOAD	138.95	
1	£ 139.00	
		,
	-	
		,

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

FINO C. G. of Loads	
1 10 0. 9. 0	:
169 Take mis about uner face	
Loao I.	-
= 9.88+10.00+15.04 = 34.92	
11.66 LOAD 2.	
¥2. = \$3.68	
LOAD 3.	
V3. = 1.87 + 18.48 = 20.35	
M75	
$\frac{34.12 \times 165}{83.68 \times 71.66} = 5761.8$	1
138.95	
12945 0	
13945-9 = 100.36 &= 107.5=100.36	
= 7.133	
ex = 7.133/215 = 0.035t	
h = 2500 hef = 2500 x 0.75 = 1875	
tef= 215 5/2 = 1875/215 = 8.72	-
13 = (IGNOVING BRAUNG EFFETT OF RETURN)	
= 0.9(9	
1 reid = 139 × 1000 × 3.5 = 2.18 ×/mm²	Ym = 3.5
1000 × 215 × 0.989	1 0 M - 213
	*
USE 5N SOLIDS MORTAR (III) fx = 3.6N/mx	<u></u>

	·			
CALCULATION SHEET	Page No. OB — 10	Project No.		
Project	Ву	Chd.		
Section	Date	Date		

CIVIL & STRUCTURAL ENGINEERS

	- T + T	
WANS - VERTICAL LOADING CAS	<u> </u>	
		
		· · · · · · · · · · · · · · · · · · ·
200 440 900		
	<u>-</u>	
		· · · · · · · · · · · · · · · · · · ·
LOAPING		
ROOF (TAKE 600 WIDTH)	KN	
1.129 X1.4 X0.6 X 1.34	1.27	
1.00 X 1.6 X 0.6 X 1.3C+	1.28	
WAU IST -> ROOF		
5.83 X1,4 X 2,475 X1.34	27.06	
1ST Frook SLANS		
15.33 x6.985(0.5) X1.34	71.74	
12.81 x 3.100 (0.5) X 1.34	26.60	
	·	
DOOR HEAD		
5.83 x1.4 x0.3 x 0.4	2.938	
WAN SOFWI.		
5.83 x 1.4 x 2.5 x 0.440	8.97	
,	139.85	
:		
,		
1		
	,	

CALCULATION SHEET	Page No.	Project No.
Praject	Ву	Chd.
Section	Date	Date

FIND C.G of loads.	
· ·	
Take MTs about d of wall.	
wall.	_
71.74 x 35.84 - 26.6 x 3	F 016
17.14 × 35.84 - 20.6 × 5	5.04
71.66 = (71.74 + 26.6) x e	•
26.6km 71.74 km e = 16.45	
- William	
en = 16.45/25 = 0.076t	
h = 2500 hef = 2500 x 0.75 = 1875	
1 1 0 6 6 7 100 7 100 7 100 7 100	
tef = 215 $sh = 1875/215 = 8.72$	
/3 = 0.93/	
7	
ANCH ROULTION FORTOK	
= 0.7 + 1.5 A = 0.794	
12635 × 1000 × 25	k 2 =
1x regd 139.85 x 1000 x 3.5 = 6.999 x/mm² 440 x 215 x 0.93/ x 0.794	/m=5.3
440 XUS X 0.73/ X 0. 194	
USE DON SOLIOS MONTAR (iii) IN = 7.9 4/mi	2
7	
RECHER FOR TYPILM 1000 LONGTH	
,	
LOADTN6 = 1.27+1.28+27.06+71.74+26.6	
= 95.4	_
= / 3 1 7	· · · · · · · · · · · · · · · · · · ·
5. W. of HOICHT CRONNO> 157 (115.8 km)	
$= 5.83 \times 1.4 \times 2.5 = 20.4$	
	<u></u>
USE B = 6.93 AT ABOVE	

CALCULATION SHEET	Page No. OB - 12	Project No.
Project	Ву	Chd.
Section	Date	Date

1/6 x 1000 x 3.5	
1/5.8 × 1000 × 3.5 2/5 × 1000 × 3.5	
1 2/5 × / (6 × 2 · /)	
= 1.02	
= 100	
5 N SOLIOS MONTAN (III) fu = 3.6 SATISPATIONY	
SATISPATONI	***************************************
1	
1000	
5N 20N 5N	<u> </u>
	!
	-
IN REGION OF DOOR OPES USE ZON	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL STEPLOT.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN RECION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHENE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	
IN REGION OF DOOR OPES USE ZON ELSEWHERE SN WILL SUFFICE.	

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

Date Date CIVIL & STRUCTURAL ENGINEERS

LOATING FIRST FLOOT 12.81 × 3.25 × 1.125 = 46.83 WMM 3.5 × 1.4 × 2.5 = 11.55 TOTAL = 11.55 + 46.83 = 56.38 As Spans ME Approx Edman Take ex as mum 0.05t SM = 0.75 × 2500 = 18.75 Loo B = 0.743 JK reght = 58.38 × 1000 × 3.5 = 2.75 × 1/mm² Vm = 3.5 1000 × 100	WAUS-VERTICAL LOADING CASE C	
FIRST FLOOR 12.81 ×3.25 × 1.125 = 46.83 NAM 3.3 × 1.4 × 2.5 = 11.55 Total = 11.55 + 46.83 = 56.38 As spans AME approx tame take ex as mum 0.05t SM = 0.75 × 2500 = 18.75 Loo B = 0.743 M regd = 58.38 × 1000 × 3.5 = 275 p/mm² Vm = 3.5	WANS - VEID (SAN)	
FIRST FLOOR 12.81 ×3.25 × 1.125 = 46.83 NAM 3.3 × 1.4 × 2.5 = 11.55 Total = 11.55 + 46.83 = 56.38 As spans AME approx tame take ex as mum 0.05t SM = 0.75 × 2500 = 18.75 Loo B = 0.743 M regd = 58.38 × 1000 × 3.5 = 275 p/mm² Vm = 3.5		•
FIRST FLOOR 12.81 ×3.25 × 1.125 = 46.83 NAM 3.3 × 1.4 × 2.5 = 11.55 Total = 11.55 + 46.83 = 56.38 As spans AME approx tame take ex as mum 0.05t SM = 0.75 × 2500 = 18.75 Loo B = 0.743 M regd = 58.38 × 1000 × 3.5 = 275 p/mm² Vm = 3.5	LOADING	1
12.81 × 3.25 × 1.125 # = 46.83 NAU 3.3 × 1.4 × 2.5 = 11.55 Total = 11.55 + 46.83 = 56.38 As spans ALE Approx Eduan Take ex as Mum 0.05t SM = 0.75 × 2500 = 18.75 Loo B = 0.743 Tregal = 58.38 × 1000 × 3.5 = 2.75 × 10mm² / m = 3.5		
WALL 3.3 × 1.4 × 2.5 = 11.55 Total = 11.55 + 46.83 = 56.38 As spans ALL approx taman take ex as mum 0.05t SM = 0.75 × 2500 = 18.75 Loo B = 0.743 The regal = 58.38 × 1500 × 3.5 = 275 m/mm² Vm = 3.5	FIRST FLOOR	
WMU 3.3 × 1.4 y 2.5 = 11.55 Total = 11.55 + 46.83 = 56.38 As spans AME approx tama take ex as mr 0.05t SM = 0.75 x 2500 = 18.75 Loo B = 0.743 Mrequ = 58.38 x 1000 x 3.5 = 275 p/mn ² // m = 3.5	12.81 ×3.25 × 1.125 = 46.83	
3.3 × 1.4 × 2.5 = 11.55 ToTAL = 11.55 + 46.83 = 56.38 As spans AME Approx Eduan Take ex as Mun 0.05t SN = 0.75 × 2500 = 18.75 LOD B = 0.743 M regd = 58.38 × 1000 × 3.5 = 2.75 µ/mm² Vm = 3.5		
Total = 11.55 + 46.83 = 56.38 As spans AME Approx Edman Take ex as mum 0.05t $SM = 0.75 \times 2500 = 18.75$ Loo $B = 0.743$ $SM = 0.743$ $SM = 0.743$ $SM = 0.743$		
As spans AME Approx Eduan Take ex as mm 0.0st SM = 0.75 × 2500 = 18.75 Loo B = 0.743 FX regd = 58.38 × 1000 × 3.5 = 275 × 1000 × 1	3.3 × 1.4 × 2.5 = 11.55	Show
As spans AME Approx Eduan Take ex as mm 0.0st SM = 0.75 × 2500 = 18.75 Loo B = 0.743 FX regd = 58.38 × 1000 × 3.5 = 275 × 1000 × 1		
$SN = 0.75 \times 2500 = 18.75$ Loo $S = 0.743$	ToTAL = 11.55+46.85 = 50.38	_
$SN = 0.75 \times 2500 = 18.75$ Loo $S = 0.743$		
$SN = 0.75 \times 2500 = 18.75$ $SN = 0.743$	As sparis Are approve educat lavce	
B = 0.)43 [N regd = 58.38 × 1000 × 3.5 = 275 N/mm² / 1000 × 1000	ex as mu b.050	
B = 0.)43 [N regd = 58.38 × 1000 × 3.5 = 275 N/mm² / 1000 × 1000	SM = 0.75 x 7.500 - 18.75	
B = 0.)43 [N regd = 58.38 × 1000 × 3.5 = 275 N/mm² / 1000 × 1000	Loo	
Ju regd = 58.38 × 1000 × 3.5 = 275 mm ² /m=3.5		
Ju regd = 58.38 × 1000 × 3.5 = 275 mm ² /m=3.5	B = 0.743	
1000 X100 X 0.143		
1000 X100 X 0.143		
1000 X100 X 0.143	IN regd = 58.38 × 1000 × 3.5 = 275 N/mm?	8m=3,5
WE 5N SOLIDS MONTAN (III) [K = 5.0 H/m)2	1000 X 100 X 0.743	
WE 5N SOLIDS MONTAN (III) JK = 5.0 H/mm²		
She Solids Montan (III) the 5.0 H/min		9 -
She V.	USE 5N SOLIDS MONTAN (III) JK = 5.0 H/m	11
Sev.		
	A	
	SK.	1
		1
	• ;	

CALCULATION SHEET	Page No.	Project No.	
Prajeci ·	Ву	Chd.	1.75
Section	Date	Date	ÇIV

			•				
Waus -	WIND I	SADIN	G.				
			····				
SITE LOCA	TON-	- Fox	and GE	BE NA	45 ROAD	Pur	3UN_
.				1 1	 		
BASIC W	IND .	>/>EET	<u> </u>	MIS	· .		<u> </u>
So FATT	2 Can	+c (-012)	. 2	Ch harc	12		
Sa FACTOR		/) 	OC4 82	<u></u>		
		7.5.M			<u> </u>		<u></u>
		7.5M	-		·		
		<u> </u>					
1							
			100	<u>~</u>		-	5.450
6.5 N					1/2		
		<u>t</u>	¥-	-,	<u> </u>		
	17.	5 M			***		<u> </u>
	17.	7				-	
		·		_			
h/w = >1/2	, < 3/2		/w = >	3/2 < 4			
	<u>, </u>						
VALUES OF	CPE		1	 	·		
WIND ANGLE		R		B			····
	1,						3
0 '	40,7	_ ₀ , رح	-0.7	-0,7	* *		APTERY CE 18.
						- 7.7	<u> </u>
90°	-0.5	-0.5	40.1	-0.1			
						-	
TAKE CPE	+ cp1	<u> </u>	0				
•							
				<u> </u>			
10.7	, -0	3 (cpi		1, 0			
<u> </u>	>				· · · · · · · · · · · · · · · · · · ·		
	· · ·	··- · · · · · · · · · · · · · · · · · ·	,				

Estimated maximum gust speed (m/s) with return period 50 years. Valid for a height of 10m. above open level country.

CALCULATION SHEE	T		Page No. 08 - 16	Project No.	T V B ILL
Project	•	· · · · · · · · · · · · · · · · · · ·	Ву	Chd.	CONSULTING
Section	····		Date	Date	CIVIL & STRUCTURAL ENGINEERS

S1 = 1.0	
SZ = 0.65. VS = 44 x 0.650 = 28.60	
32-0,63.	
53 = 1.0	
•	
q = 28.6 × 0.613×10-3 = 0.50/ N/mm2	ay=0.501
7	
CONSIDER UPPER STONEY PIERY	
3/8/	-
Roof-	
4	
928	
Plane 1. 1360	
1542	
1/27/	
815.	
157 Floor. I Plane 2	
Propped 1135 2019 1135	
contlaver	
Analysis	
WT OF WALL ABOVE PLANE!	
Inner = 2.75 y 1.199 m x 0.9 = 5.44 ky	1 = 0-9
on TER = 2.2 × 1.109 n:2 × 0.9 = 4.35 Km	*
7.3,100	
Novy Loss (inner)	
= 1.129 x 4.0 x 0.9 x 3.15 = 12.8 kg	
	<u> </u>

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

	· ·	
20 W A 100 C	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	·
CHECK WAN AT PLANET.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- :
Check with the transfer of the		
outex	inner	
<i>quita</i>		
fux = 0.25	frex = 0.75	-
frox -		
7 - 2015 × 100 /4	Z = 3.35 × 10 6	
$Z = \frac{2015 \times 100}{6}$ = 3-35 \times 106		
= 3*32 X 10		
		8 m = 3-5
Mr = (0.25 + 4.35 × 1000)7.35	Mr = 10.25 + 18.24×1000 3.35	
$Mr = 1.25 + 4.35 \times 1000$ 7.35	35 2015 X 100/	
	1	
= 0.3//	= 0.54	
		-
ToTAL Mr = 0.311+0.5	4 = 0.853 Knm	
		V/- ,
		11=1.4
DESIGN MT. = 0.50/X1.4 X3	15 × 2.475 × 9	$q_1 = 0.50/$
118		•
= 0.952 KN	'M	- !
0.952 > 0.853 : CHEVIL	CARKED SETTION.	
		$J_k = 5.0$
Nw/2 (1 - NW.8m)		Solid .
1.1 fk	<u> </u>	men Tar (iii)
onter leat	Inner Cof	mar jar (11)
onter leaf	1	
$= 4.85/0./-4.35 \times 3.5$	= 18.24 /0.1- 18.24×3.5	
2 (0.605 × 106 × 1.1)	2 (0.005×106×1)	
2 0.003 XIV XIII		
= 0.21/ KNM	= 1.806	
VIVII I IVAN		**

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Dote

T-T-0 110 = 0.1	211 + 0.806 = 1.017 KNM	
18120 1011	017 1 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
:. 1.077 7 0.952		,
in the state of SATE	s tous Tours	
	s FAL TONG	
etterk wan AT	PLANE R.	
		· · · · · · · · · · · · · · · · · · ·
= 2.75 × 6.252 × 0.9	15.47 Km	
= 101/3 x 6.0/2 x 6.7	= , , , , , , , , , , , , , , , , , , ,	
= 1.1 × 6.252 × 0.9	10.00	
= 1.2 × 6.252 × 0.9	= 1203/ KA	
Roof = 12.9 KN		
-		
inner	on Tex	
fky = 0.25	fely = 0.25	· · · · · · · · · · · · · · · · · · ·
Z= 3.150×1502/6	Z= 5.25 ×102	
S.25 × 10 6		
Mr = 10.25 + 18.27 × 1000 5.25	$M_{r} = \left(\frac{0.25}{3.5} + \frac{12.37 \times 1000}{3150 \times 100}\right) 5.25$	
3.5 3/50 X 100	3.5 3/50 X/60	,
0.811/	0.59	
- 0.846	= 0.58	, , , , , , , , , , , , , , , , , , ,
TOTAL = 1.407 KNM		
DESIGN MOMENT = 0.50	1/x1.4 x 3.15 x 2.475	
	11/2	
= /.6	91 KNM	
1.69/> 1.427 CHFT	A CANKED STETION.	
	<u> </u>	20

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date
4	EET E.	

	3 m m m m				
10 / / + - 11 × 1		· ·		- I	k=5,0
Nw/2 (t- nw sm)				/	
1.14	727 4 V	- ::	दु.		
		-1	-		,
onter	1		7. . .		
		5/6 km			
$= 12.37 6.100 - 12.37 \times 3.5$ $= 1.1 \times 0.005 \times 10^{6}$		1369 MAIN			
2 1.1 × 0.05 × 10°	·/		erë :		
	<u></u>	45		_	
					
umer			min si		
	- }	,			
= 21.2) (0.100 - 28.2) X3.5	_) = /	1.159 KNA	1		
2 1.1 x 0.00 \$ X/0°				<u> </u>	
	<u> </u>	<u> </u>	<u> </u>	-	
TOTAL = 1.72 KNM					
		-			•
	w				<u> </u>
1.72 7 1.69/		-			<u>-</u>
11/2/11/	. *		-		
· wan is SATIS FAR	7000		-		
want is sails free	/ 8 / 9 /				
-	A 1911	<u> </u>	E. 7.7		
	T				
A= 2.0		-	1 1	±5	
	. <u> </u>		- :		
	*		- -	2	
	*********	- · · · · · · · · · · · · · · · · · · ·			
		,	2.	1	1
				:	
	4 24 V		- :		
· ·	<u> </u>		:		
		· · · · · · · · · · · · · · · · · · ·	y	. .	
		···			1 _
			· · · · · · · · · · · · · · · · · · ·		
				- 14,1	<u> </u>
			•		
				,]	<u> </u>
	3 0.		· · · · · · · · · · · · · · · · · · ·	-	-
	•		-		
			7		

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

FOUNDATIONS	
,	
CHECK 4 CASES	
1) FRONT WAR	<u></u>
2) REAR WAR AGAINT	1 EXISTIMC
1	
3/ 215 Internal wall	
4) 100 Internal wall.	
Case / Front War	۷.
Loading	
Roof.	
2.129 X 4.0	8.5/6
wall (uner)	
175 × 1.5	6.875.
5.26 × 3.675	19.0
First Floor	01 110
10.45 × 6.985(0.5)	36.49
<u> </u>	71.28
	7,7,00
onter lead	13.58
2.2 x 6.175	/2.>0
71.28 13.58	
	71.28 x 4.50 + 13.58 x 707.
	84.86
0.45	= 49/
0.707	
- 	L=491-450 = 41
	. /
MAY PRESSURE = 84.86	(1-1 6 x 0.04/_)
0.9	0.9
= 120 k	W/m2 SATISFALTONIA
,	7.

CALCULATION SHEET	Poge No.	Project No.
Project	Ву	Chd.
Section	Date	Date

CIVIL & STRUCTURAL ENGINEERS

CASE 2 REAR WAR	
Loading	KN
Ros f (AS FRONT)	8.516
wall	
5.83 X 6.175	36.00
Floor (AS FRONT)	36.49
25	8/.00
215	
300	
300	
1415 EX.	-
81/1.415 = 57.24 Ku/m2 pressu	ne
SATIS FACTORING	
NOTE EXACT DETAIL DEPENDANT	upon
OPENING UP. ON SITE!	

CALCULATION SHEET	Page No. OB - 22	Project No.
Project	Ву	Chd.
Section	Date	Date

			,
CUSE 3 (215	internal wall)		
		•	
1 1			
Loading			
Stat		· · · · · · · · · · · · · · · · · · ·	
10.45 X 6.985 (c	5/	36.49	
8.65 × 1.55		13.40	
184			
WAU 5.85 X 3.675		21.49	-
		77.38	
2/28/0120	= 105 KN/m2		
11.30 / 0.6/3	103 124 102		
SATIS FARTONY	·	<u> </u>	
/			
	215		
			-
	675		
		•	
		· · · · · · · · · · · · · · · · · · ·	
	1		

CALCULATION SHEET	Page No. OB - 23	Project No.	DRAFE
Project ·	Ву	Chd.	CONSULTING
Section	Dote	Date	CIVIL & STRUCTURA
			ENGINEERS

.

		ENGINEERS
-	• ,	
icas et lin item	0/	
CASE of 100 internal	wae,	
Loading		
¥		
Slat		
8.65 X 3.2	27.68	
i		
wall	-	
3.3 X 3.675	12.1	
	39.8	
39.8 /0.35 = 1/3 Km/m2		
21.0 10.33 - 113 KM/M		-
Same and and		
SATISFACTORY.		
160		
·		
	e. · · · . · · .	
350.		
· · · · · · · · · · · · · · · · · · ·		
ı		
Y		
		·
· · · · · · · · · · · · · · · · · · ·		
		•

CALCULATION SHEET	Page No. OB-2	Project No.	U-D Tab
Project	Ву	Chd.	CONSULTING
	Date	Daie	ÇIVIL & STRUCTURAL
Section Roof	Dule		ENGINEERS

		· · · · · · · · · · · · · · · · · · ·
#		
THE DESIGN OF THE ROOF	EXCEPT	
and Round IN Daillia al	DANT	-
FOR BEAMS AS DESINIED ON 0B-25 -> OB-2) IS TO RESPONSIBLITY OF THE TRUS RAFTER MANUFACTURER/SU	n= -11-	
$\frac{63-25}{63-25} \rightarrow \frac{675-29}{575-29}$:
RESponSIBLITY of 14E TRUS	SED	
RAFTER MANUFACTURER/SU	ppher	
<u>'</u>		
SEE THE POLIONING PAUES	For	
	<u> </u>	
BEAMS IN ROOF SEE ALSO		
DEMMS IN MOSE THE TIEST		
2011/ 12		
DRAWING No. 9214-13.		
	V.,.	
19-10-		
:		
	-	
	- 1	
	v	
	4	
	-	
	·	
	- 1	
	· — · · · · · · · · · · · · · · · · · ·	· .
		1 - 2 - 1

AREA 1. = 8.56 M Approx.

AREA 2. = 7.725 m2 APPROX.

CALCULATION SHEET	Page No.	Project No.	DBEL
Project	Ву	Chd.	CONSULTING
Section	Date	Date	GIVIL & STRUCTURAL ENGINEERS
POINT LOAD PI			
	= 18.23 K	<i>H</i>	PAUE 08-1
	16.23		
3.0	/ 5	4	
6.08		P3 = 12.15	
BEAM MK 1.			
MAX BM = 6.08 X3 =	18.24 KAN	1	
Try 2002 133 x 30 UB.			
Zxx = 179.3 cm3 1	Ly = 31.8		,
l/r = 3000/31.8 = 94.3	0/7=	= 21.5	
p62 = 165	11 0 0 0		
for = 18.24×106/279.3	X102 = 6	5. 306 N/mm2	

18230 × 3000 × 1500 (4500 + 1500)

27 × 2/5000 × 2887 × 104 × 4500

6.944 mm

360 = 12.5mm Okr

13 × 3000 (4500 + 1500)

CALCULATION SHEET	Page No.	Project No.
Project	Ву	Chd.
Section	Date	Date

ÇIVIL & STRUCTURAL ENGINEERS

	12.15 /2 = (7.725)(1.129) = 16.44	
A 20	1500	
RA	Ro	
	6500	
Be	Am MK 2.	
Rn = 18.99	RB = 12.59	
,	<u>, , , , , , , , , , , , , , , , , , , </u>	
	37.74 KNM	
/	203 x 46 uc	
pb = 165	/be = 37.74 × 106 = 84 449.2 × 10 ²	
ok for	rending	
/		
ok for a	deflection by impedior	
usi Por x	103 X46 UC-	

INDUSTRIAL UNIT

CALCULATION SHEET	Page No.	Project No.	少线化
Project Packaging Industries Lit Industrial Unit.	By PLUE	Chd.	CONSULTING
Section Loading	Dote Jan'92	Date	ENGINEERS
Industrial Unit			
		4 244 1 T	
1.0 Loading			
1.1 Geometry	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
1.1. 19 m Span Section			
IIII CPAN			
		. y.	
			1000
u E			
			6200 6950
	ं ३२७०		
			150
12000			
19000	·		
		-	
1.1.2 12m Epan Section			
		·	
-			i
		630	
,		1.0	6950
		6200	. 0.120
			-
		Ko	
			7
1200			
		-	

Project	By PUE	Chd.	CONSULTING
Section .		Date	GIVIL & STRUCTURA
Loading	Dote Jan'92		ENGINEERS
Coste Porte Rober Robert Rober	Roberts		
2 Dead + Live Loadings -			
	·Stotic	F10	10
Insulated metal Deck Purling Rotae France (refters) Lights on fittings	21.0 20.0 271.0		35
	Gz	= 0,4	18 LJ /m²
Live:			
Eufocrimposoch	Ø.	F.0 =	5 L)/m ²
GK + OF = 1,23	- ku / ra a		
II			

Project No.

Page No.

CALCULATION SHEET

CALCULATION SHEET	Poge No.	Project No. 9214
Project	By Au	Chd.
Section Loading	Date . Jan 192	Date

CONSULTING

CIVIL & STRUCTURAL

ENGINEERS

Wind Loading	
Wine Rooming	-
U = 44 m/s	
Conservatively treat as Class B.	(P 2: Ch. V
Category (3)	<u> </u>
S1= 1:0, S3 = 1.0,	
Sa; h=3 Sa=0.60; q=0.43 kg	/~ "
$h \stackrel{\leftarrow}{\leftarrow} 2 = 0.60 ; q = 0.50 ;$	`
h = 20.0 = p (4F.0 = 52 01 x A	
Frictions Drog!	
'19m Span Section'	
	-
d = 27 = 4,2 ; d = 27 = 1,42	
h 6.35 b 19	· · · · · · · · · · · · · · · · · · ·
F' = 0,04 x 0.65 x 19 (27 - 4 x 6.35) + 0.04 x 0.65 x 2 x	L3E (27 - 4× 6:35
= 0.8 + 0.5	
= 1.3 kg	
12m Spor Section	
1 25 27 4 5 27 5 21	
d = 25 = 2.9 $d = 25 = 2.1$	
<u>h</u> 6.35 <u>b</u> 12	
=> no frictions drag.	
Take as Single Puilding	
(with words forcible and mations)	
$\frac{d}{d} = \frac{1}{52} = \frac{8}{12}$	
P 9.3c P 13	
E = 0.04x0.65x19 (52-4x6.35) - 0.04x0.65x2x6.5	5 52- 4x63
= 18.1 - 8.8	\ B
= 21.9 /w	

CALCULATION SHEET	Page No.	Project Na.
Project	By PHF	Chd.
Section Loading	Date Jan'92	Date .

.

UBE
CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

	a_				<u> </u>		· · · · · · · · · · · · · · · · · · ·	J	INGIN	
				·. <u> </u>						
- \		. ,	C \							
<u> </u>	as Pro	₹-core	CO - E.T.		· .					
					·	<u> </u>				
19m 5	from So	chion								
,										
<i>h</i> =	= 6'5E	= 0,	32 1	<u> </u>	27	= 1.42	<u> </u>			
. W	19			<i>W</i>	19					
		····			, .	-1				
							,		C	
Dass				·						1
		· ·-				· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7		
1		Α	<u> </u>	<u> </u>				A		B
0	4	F,0-	-0.2	2.0-	-0.5					
90				+0.7					4	
- 10				· <u> </u>	-		****	-		
		<u>~1</u>		7			- \			
<u>-</u>	<u>Local</u>	<u>_</u>	<u> c</u>	<u> ۱۸۶۵</u>	0.55 M	= 4, 4.	<u>>m</u>)		<u> </u>	
							··· <u> </u>	 		
Pool		(= 6°					-	i
							· · · · · · · · · · · · · · · · · · ·		E G	
	d	=0			≪ =	90.	ء. ۔	× 1/2	r H	
				EG						
									-	
. <u> </u>	0,46	<u> </u>		<u>-0.8</u>		<u> </u>			+	
					7		^			
	Lacae	Co-0/4	- E	- 1,4	0.121	m = m.	8EV)			
					-	· · · · · · · · · · · · · · · · · · ·				
12 m	Star S	action	<u> </u>							
			•							
	= 6.35	<u> </u>	-0 (ļ, <u>.</u>	- 25	= 1.3	:			
<u> </u>	12	<u> </u>))	W.	19	- 11-2	,			
- 0	l'al.		<u> </u>	W	1			-		
Malle	22	·								
		<u> A</u>			<u> </u>					
	. 0	F,0+	-0.22	-0,6	-0.0		Local	_ CL	= -	1,1
	90	-0.6		40,4			(N.N	٠ ساء		
	 -				1					
D!		. 1	-	٠ نو٠)) '					-
Pool			,							
		=			<u>م =</u>					
	EF	€-ri		تن	- " - ;	E #				
<u>~(</u>	0194	-0,60		-0,91	,	-0160	كره دوا	<u> </u>	<u> </u>	· 2 . (
							(6,	= 6.21	ે I ત્રક્	Cm
										··· · · · ·

CALCULATION SHEET		Page No.	Project No.	
Project		By Aut	Chd.	CONSULTING
Section Looding		Date Van'42	Date	ENGINEERS
Internal Pra	we Co-ebbs: !			
Chi =	+0.2 %	0,3		
1.4 Leaving to	19 m Span Porta	o '		
Portals a	+ 5.5m c/c			
1.4.1 Dood + Live				
13 = 1.2	3 × 5,5 = 6,=	IT Las /m		4.2
1.42 ma, Dead 4	- Bra (X=0	: Fat, Pross	we	
Mr. Dead	C = 0.38 x 5	5.5 = 2.10	· he /m	F 2
Dra (x	-0: Int. Rossure) :		
0	0.96 (-1.16)	1 -0.4	(0 (-0.60)	
В		1	D	
F.0+ -> <	+0,20		-0.0a 	b. 4
(+050)		(1	0.40)	
P.			<u> </u>	
BC : 1,16 X	0.65 × 5.5 =	4.15	" m	* qav.
CD : 0.6 X	0.65 x 5.5 °	= 1,10	11	b.3 .
				1
<u> </u>				
				·
. [

DRAIL

CALCULATION SHEET	Page No. Project No.	USE				
Project	By PUT Chd.	CONSULTING				
Section Laading.	Date Jan'92 Date	GIVIL & STRUCTURAL ENGINEERS				
15 Looding to 12m Sp	n Portal!					
	m de.					
1.51 Dond - Live		lı				
W = 1,23 × 6	= 7.4- <u>L</u>	<u> </u>				
152 Mm. Dood + What (x	= 0; Tat. Processe)					
Mak Social W = 0.	Mul. Doca W = 0.28x6 = 2.3 m/m					
and (x=0) Ind. P						
-0.94 X (-1.	1) -0.60/ (-0.80) E D9					
CF, 0+	0,25	þ. 4-				
(4-0.5)	(-0,45)					
A	E					
AC: 0.5 x 0.5* x	6 = 1.50 kg/m	*qw.				
CO: 0.8 × 0.65 ×	þ. 3					
	. 11					
		,				
	1					

DBFL CONSULTING ENGINEERS PAGE 1					
	JOE NO. RUN NO.	7214			
PACKAGING FRODUCTS LTD.	AUTHOR	ĖMF .			
19m Fortal Frame - DEAD + LIVE	DATE	30/1/92			

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel)

Data File: FORTAL

XStrXZ. 100 PACKAGING PRODUCTS LTD.

745B0334B

DRFL CONSULTING ENGINEERS PAGE 2 JOB NO. 9214 RUN NO. 1 FACKAGING PRODUCTS LTD. AUTHOR PMF 19m Portal Frame DATE 30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

<u>Joint Co-ordinates</u>

JOINT	X (m)	Z (m)
123456789011	.000 .000 .950 8.550 9.500 10.450 18.050 19.000 19.000	.000 6.260 6.950 7.050 7.850 7.950 7.850 7.050 6.950 6.260

Section Properties
N.B. If a Shear Area value field is null (empty),
shear distortions are ignored in the analysis.

SECTION NO.	N REFERENCE	ARÉA Ax (cm2)	Iy (cm4)	zMAX (mm)	AZ SHEAR AREA (Cm2)
	DESCRIPTION				
1	Stanchion 533x210x92	1.180E+02	5.540E±04	2.655E+02	
2	Fafter 457x191x67	8.540£+01	2.940C+04	2.2686+02	

Member/Element Incidences

					_ = +=
MEMBER/ ELEMENT NO.	NODE 1	NODE 2	NODE N	ODE 4	MEMBER LENGTH (m)
1274567890	1234567890	234547890 1011			6.260 .690 .955 7.642 .955 .955 .7.642 .955 .690

Member/Element Details

			-	
MOTETY BLEMBAT NO.	y AXIÉ FLEXURE TYFE NO.	SECTION/ THICKNESS GROUP	MATERIAL GROLF	
HWM4	FF FF FF	1 1 2 2	1 1 .1 1	

DBFL CONSULTING ENGINEERS

FAGE
JOB NO. 9214
FLIN NO. 1
FLIN NO. 1
AUTHOR FMF
19m Fortal Frame

PACKAGINS PRODUCTS LTD.
DATE
JOATE
JOATE
JOATE
JOATE

EN202: FLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel) (c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

Member/Element Details

			100 miles 100 mi	·	in the second second	
MEMEER/ Y AXIS ELEMENT FLEXURE NO. TYPE NO.	SECTION/ THICKNESS GROUP	MATERIAL GROUP				
5 FF 6 FF 7 FF 8 FF 9 FF 10 FF	200011	1 1 1 1 1		. 1. ⁻		

Stress Directions Angular directions relative to the element local \times axis direction as defined by the Element Incidence Table and adjusted by Local Axes Re-Orientation Table.

 DBFL CONSULTING ENGINEERS

JOB NO. 9214
FACKAGING PRODUCTS LTD.
FACKAGING PRODUCTS LTD.
FACKAGING PRODUCTS LTD.

PAGE 4
JOB NO. 9214
FRUN NO. 1
FACKAGING PRODUCTS LTD.

AUTHOR FMF
DATE 30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel) Data File: PORTAL

25-35-3001(7-48-3014-3

			•
DBFL CONSULTING ENGINEERS	. # .	FAGE JOB NO.	5 9214
PACKAGING PRODUCTS LTD. 19m Portal Frame		AUTHOR DATE	1 FMF 30/1/92
EN202: PLANE FRAME/FINITE ELEMEN Units: S.I. METRIC (Steel)	T ANALYSIS+V4.0	(c) ENCAD SYSTE Data Fil	MS LTD, 199 le : FORTAL
Basic Load Case B1 : DEAD + LIVE Load Groups PLANE FRAME/FE LOAD TYPES : JF=Joint Forces : JM=Joint Moments : F?=Point Forces	VALUE 1 VALUE FX FZ MY 1	E2 VALUE3	VALUE 4
: M%=Point Moments : U?=Uniformly Distributed : T?=Triangularly Distrib. Load : V?=Variably Distributed Load : t =Temperature Elevation : g =Gravitational Loading : Fz=Prestressing Force : C!=Concentrated Element Loads	:t:gX:gZ:ezs	: V?2 : EZM	L2 E eze
: D!=Distributed Element Loads N.B. 1. ? is one of X,Z (global % is one of Y (global di ! is one of X,Z (global 2. VALUES are load intensit L.Li.L2 are distances	D! : x,z directions) or x,z irection) or y (memb directions) or x,y ties except that:- along the member fr	(member direct er direction). (element direc	
t is the temperature e gX,gZ are 'g' factors; ezs.ezm.eze are tendor middle and end of the 3. JOINT/MEMEER/ELEMENT LIS	elevation of the gro gz=-1 for normal g n offsets from the c	up of members ravity loading entroid at the	start,
TYPE MEMBER/JOINT/ELEMENT LIST	VALUE 1 VALUE	2 VALUE 3	VALUE 4
1 UZ 3,4,5,6,7,8	-6.7300°		<u></u>

DBFL CONSULTING ENGINEERS

PAGE
JOB NO. 9214
RUN NO. 1
PACKAGING PRODUCTS LTD.

PACKAGING PRODUCTS LTD.

PATHOR FMF
19m Portal Frame
DATE
30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel) Data File: FORTAL

39-29175 726901**0**8

<u>Pasic Load Case</u> Ri : DEAD + LIVE <u>Joint Displacements</u>

		 .	
JOINT	X LINEAR '(mm)	Z LINEAR (mm)	Y ROTATION (rad)
123456789 10	.00000 -6.55726 -4.96177 +4.57429 :07151 .00000 .07150 4.57428 4.96177 6.55726	.00000 16637 18471 -4.02837 -47.97919 -48.78953 -47.97920 -4.02837 18471	00248 .00162 .00262 .00512 .00170 .00000 00170 00512 00282 00182

FAGE JOB NO. FUN NO. AUTHOR DATE 7 9214_, • DEFL CONSULTING ENGINEERS PACKAGING PRODUCTS LTD. 19m Fortal Frame 30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

<u>Basic Load Case B1</u>: DEAD + LIVE <u>Joint Displacements</u>

JOINT	X LINEAR (mm)	Z LINEAR (mm)	Y ROTATION (rad)
11	.00000	.00000	.00248

B1 : DEAD + LIVE _120'0 k Nm_ Y XST YZ PACKAGING PRODUCTS ı 10m DEFL CONSULTING ENGINEERS

DEFL CONSULTING ENGINEERS

JOB NO. 9214

RLN NO. 1

PACKAGING PRODUCTS LTD.

AUTHOR PMF
19m Portal Frame

DATE

30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD: 1991 Units: S.I. METRIC (Steel) Data File: PORTAL

Z B1 : DEAD + LIVE

Sz XZLLLL 70kN

XStrXZL 1 10m

FACKAGING PRODUCTS LTD.

SERVICE DE LA COMPANION DE LA

PAGE JOB NO. RUN NO. AUTHOR

DATE

9214 FMF 30/1/92

FACKAGING PRODUCTS LTD. 19m Portal Frame

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

B1 : DEAD + LIVE Nx XZLLLL 70kN XStrXZL 110m PACKAGING PRODUCTS LTD.

2006-002 746-001-18

Basic Load Case B1 : DEAD + LIVE Mamber End Forces

I SENTINGE LA PORTI	<u> </u>		
MBR JOINT	AXIAL NK (kN)	SHEAR! Sz (kN).	MOMENT My (kNm) :
140000044556	64.2882 64.2882 64.2882 31.5297 30.8567 30.8557 25.4727 25.4727 24.7997	-24.9367 -24.9367 -24.9367 -24.9367 61.3245 54.9310 54.9310 3.7830 -2.6105	.0050 -154.1058 -156.1038 -173.3101 -173.3101 -117.7837 -117.7837 104.5623 104.5623 107,1223

FACKAGING FRODUCTS LTD. 19m Portal Frame

FAGE JOB NO. RLN NO. AUTHOR DATE

9214 1 FMF 30/1/92

10

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : PORTAL

Basic Load Case R1 : DEAD + LIVE Member End Forces

			· · · · · · · · · · · · · · · · ·	
MBR	TNIOL	AXIAL Nx (kN)	SHEAR Sz (kN)	MOMENT My (kNm)
66778899910 10	677788999 100 1011	24.7997 25.4727 25.4727 30.8567 30.8567 31.5297 64.2882 64.2882 64.2882	2.6105 -3.7830 -3.7830 -54.9310 -54.9310 -61.3245 24.9367 -24.9367 -24.9367	107.1223 106.5623 106.5623 -117.7836 -117.7836 -173.3101 -173.3101 -156.1038 -156.1038

<u>Basic Load Case</u> B1 : <u>DEAD</u> + LIVE <u>Mamber End Stresses</u>

	i				
MER	JOINT	Αχ ΑΧΙΑ <u>L</u> (N/mπ2)	By yAXIS BENDING (N/mm2)	Ax +AES.By (N/mm2)	Ax -ABS.By (N/mm2)
11777544556677889900 10	199554455667788999001 111	5.4482 5.4482 5.4482 5.4482 5.6132 3.6132 2.9828 2.9039 2.9039 2.9828 3.6132 3.6132 3.6132 3.6132 5.4482 5.4482	-75.1073 -75.1073 -75.1073 -83.3859 -133.6964 -90.8617 -90.8617 -82.2052 82.2052 82.2052 82.2052 -90.8617 -90.8617 -133.6964 -83.3859 -75.1073 -75.1073	5.4482 80.5555 80.5555 88.8341 137.3884 94.4749 94.4749 85.1879 85.5411 85.5411 85.1879 94.4749 94.4749 137.38341 80.5555 5.4482	5.4482 -69.6592 -77.9378 -130.0044 -87.2485 -87.2485 -79.2224 -79.7333 -79.7333 -79.7333 -79.2224 -79.2224 -87.2485 -87.2485 -87.2485 -130.0044 -77.9378 -69.6592 -69.6592 -69.6592

Basic Load Case B1 : DEAD + LIVE Support Reactions

JOINT X FORCE		Z FORCE	Y MOMENT	
(kN)		(kN)	(kNm)	
11	24.9367 -24.9387	64-2882 64-2882	.0000	

Basic Load Case B1 : DEAD + LIVE Load Balance

		,	
	X	LINEAR (kN)	Z LINEAR (KN)
XTERNAL LOADS SL EACTIONS SLM	k-i	.0000 .0000	-128.5765 128.5765

FAGE JOB NO. RUN NO. AUTHOR DATE

FACKAGING PRODUCTS LTD. 19m Fortal Frame

30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS_V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

Basic Load Case B1 : DEAD + LIVE Global Joint Loads from Back-Substitution

MIOL	X FORCE (kN)	Z FORCE (kN)	Y MOMENT (kNm)
1 2 3 4 5 6 7 8 9 10 11	-24.9367 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	-64.2882 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	.0000 .0000 .0000 .0000 .0000 .0000 .0000

HE REPORT THE BUILDING SECTION AND THE

to be to the committee

DBFL CONSULTING ENGINEERS		PAGE JOB NO. — RUN NO.	13 9214 1
PACKAGING PRODUCTS LTD.		ALJTHOR	FMF
19m Fortal FrameUN.		DATE	30/1/92
ENZO2: PLANE FRAME/FINITE BLE	MENT ANALYSIS-V4.0	(c) ENCAD SYST	EMS LTD. 1991
Units: S.I. METRIC (Steel)		Data Fi	.le : PORTAL

Z XStrXZI PACKAGING PRODUCTS	LTD.	 	10m	7-690148
M. L			° .	ć.
Material Properties ENTRY TABLE REF./ NO. DESCRIFTION	YOUNG'S MODULUS (kN/mm2)	POISSON'S FATIO	COEFFICIENT OF THEFMAL EXP. (/ Deg C)	WEISHT/UNIT VOLUME (kN/m3)
1 SI Steel - Deg. C	205	<u>.300</u>	1.200E-05	77

PAGE JOB NO. RUN NO. AUTHOR

14 9214 ĒMF

30/1/92

PACKAGING PRODUCTS LTD. 19m Fortal Frame

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

Joint Co-ordinates

JOINT	X (m)	Z (m)
123456789 111	.000 .000 .950 8.550 9.500 10.450 18.050 19.000 19.000	.000 6.260 6.950 7.050 7.850 7.950 7.050 6.950 6.260

Section Properties
N.B. If a Shear Area value field is null (empty),
shear distortions are ignored in the analysis.

SECTION NO.	REFERENCE	AREA Ax (cm2)	Iy (⊏m4)	zMAX (mm)	Az SHEAR AREA (cm2)
	DESCRIPTION				

1 Stanchion 533x210x92 1.180E+02

5.540E+04

2.665E+02

2 Rafter 457x191x67

8.540E+01

2.940E+04

2.268E+02

Member/Element Incidences

					, <u>A</u> K/b "-
MEMBER/ ELEYENT NO.	NODE 1	NODE 2	NODE 3	NODE 4	MEMEER LENGTH (m)
1 23 4 5 6 7 8 9 10	1234567890 10	2345478901 11			6.260 .690 .955 7.642 .955 .955 7.642 .953 .690

1		
Masham	/Flement	N=+sile

	y AXIS FLEXURE TYFE NO.	SECTION/ THICKNESS STOJF	MATERIAL GROUP
1234	FF FF FF FF	1 2 2 2	1 1 1 1

A-14

DBFL CONSULTING ENGINEERS

FAGE JOB NO. RUN NO. ALTH-IOR DATE

15 9214 1 FMF 30/1/92

PACKASING FRODUCTS LTD. 19m Fortal Frame

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

Member/Element Details

MEMBER/ ELEMENT NO.	y AXIS FLEXURE TYPE NO.	SECTION/ THICKNESS GROUP	MATERIAL GROUP
5 6 7 8 9	FF FF FF FF FF	2 2 2 2 1	1 1 1 1

Stress Directions Angular directions relative to the element local \times axis direction as defined by the Element Incidence Table and adjusted by Local Axes Re-Orientation Table.

....

DBFL CONSULTING ENGINEERS FASE 16 JOB NO. 9214 FACKAGING PRODUCTS LTD. AUTHOR PMF 19m Fortal Frame DATE 30/1/92

EN202: PLANE FRAME/FINITE BLEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel)

DBFL CONSULTING ENGINEERS	FAGE JOB NO: RUN NO:	17 9214 1
FACKAGING FRODUCTS LTD. 19m Portal Frame	AUTHOR DATE	PMF 30/1/92
EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) Units: S.I. METRIC (Steel)	ENCAD SYSTE Data Fil	MS LTD. 1991 e : FORTAL
Basic Load Case B2: MIN.DEAD + WIND Load Groups PLANE FRAME/FE LOAD TYPES PRICE FX FX FX FX FX FX FX FX FX FX	direction). ement direc NODE 1. of members ity loading roid at the	eze LZ(z) ions). tions). in degrees.
E TYPE MEMBER/JOINT/ELEMENT LIST VALUE 1 VALUE 2	VALUE 3	VALUE 4
1 Uz 1,2 -1.3800 2 Uz 3,4,5 4.1500 3 Uz 6,7,8 2.1500 4 Uz 9,10 1.1000 5 UZ 3,4,5,6,7,8 -2.1000	•	

DBFL CONSULTING ENGINEERS

FAGE
JOB NO. 9214

FACKAGING FRODUCTS LTD.
FACKAGING FRODUCTS LTD.

FORTal Frame

PAGE
JOB NO. 1

RLN NO. 1

ALTHOR FMF
DATE
JO/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel) Data File: FORTAL

Rasic Load Case B2 : MIN.DEAD + WIND Joint Displacements

OUTILE	DISTINCT	<u>ire</u>	1
JOINT	X LINEAR (mm)	Z LINEAR (mm)	Y ROTATION (mad)
1884567800	.00000 9.12204 9.34089 9.32512 8.60362 8.59352 8.58531 7.95003 7.84457	.0000 .04395 .04879 .22029 7.28755 7.41507 7.30296 1.03404 .00711	.00202 .00046 .00017 .00047 00027 .00000 .00023 .00105

DBFL CO	NSLLTING EN	GINEERS	,			FAGE JOB NO. - RUN NO.	19 9214.
	NG PRODUCTS tal Frame	LTD.	-		-	AUTHOR DATE	PMF 30/1/92
Units: S	s.I. METRIC	(Steel)	EMENT ANALY	SIS-V4.0	(=) ENCAD SYST Data Fi	TEMS LTD. 1991 le : PORTAL
Joint D	<u>pad Case B2</u> isplacement	= 11114.DEP	ID T WIND				المحمد المحمد المحمد
JOINT	X LINEAR (mm)	Z LINEAR (mm)	Y ROTATION (rad)	- 		• •	
11	.00000	.00000	.00123	- Mr		. · · · · · · · · · · · · · · · · · · ·	

4-19

DBFL CONSULTING ENGINEERS

PAGE 20
JUB NO. 9214
RUN NO. 1
AUTHOR FMF
DATE 30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel)

PAGE JOB NO. FUN NO. AUTHOR

21 9214 1

PACKAGING PRODUCTS LTD. 19m Fortal Frame

DATE

FMF 30/1/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

B2 : MIN.DEAD + WIND

PACKAGING PRODUCTS

Basic Load Case E2 : MIN.DEAD + WIND '

Ī	les no	er End	Forces	· ·	
	MER	JOINT	AXIAL NX (KN)	SHEAR SZ (KN)	MOMENT My (kNn)
_	1100000455	HUNDDAADDA	-16.9829 -16.9829 -16.9829 -16.9829 -4.0570 -4.2670 -4.2670 -5.9470 -5.9470 -6.1570	11.8827 3.2439 3.2439 2.2917 -16.6497 -14.6804 -14.6804 1.0738 1.0738 3.0431	.0000 47.3463 47.3463 49.2561 49.2561 34.2920 34.2920 -17.6988 -17.6988 -15.7325

FAGE JOB NO. KUN NO. ALTHOR DATE

à.-

Training to the second

22 9214 -FMF -

30/1/92

PACKAGING PRODUCTS LTD. 19m Portal Frame

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

(c) ENCAD SYSTEMS LTD. 1991 Data File : FORTAL

Basic Load Case E2 : MIN.DEAD + WIND Member End Forces

	<u></u>	7.757	<u> </u>
MER JOINT	AXIAL Nx (kN)	SHEAR Sz (KN)	MOMENT My (k.Nm)
6 67 77 88 9 9 10 10 10 10 11	-6.6557 -6.4457 -6.4457 -4.7657 -4.7657 -4.5557 -2.7466 -2.7466 -2.7466	1.6944 1.7532 1.7532 2.2235 2.2235 2.2822 -4.2917 -3.5327 -3.5327 3.3533	-15.7325 -14.0658 -14.0858 1.1087 1.1089 3.2610 3.2610 5615 5615

Rasic Load Case B2 : MIN.DEAD + WIND Member End Stresses

Wewder Fro s	rre=>=>		. 28 <u>uc ±</u> -	<u> </u>
MER JOINT	Ax AXIAL (N/mmZ)	By yaxis Bending (N/mm2)	Ax +AES.By (N/mm2)	Ax -AES.By (N/nn2)
1112000004455467788999001	-1.4392 -1.4392 -1.4392 -1.4392 4751 4996 4996 6964 7210 7794 7548 7548 5580 5580 5334 2328 2328 2328	.0000 22.7801 22.7801 23.6987 37.9775 26.4538 -13.6534 -13.6534 -12.1365 -10.8662 -10.8662 -10.8655 2.5154 1.5690 -2702 -2702 -0000	-1.4392 21.3408 21.3408 22.2597 37.5225 25.9542 25.9570 11.4155 11.3571 10.1115 10.1115 10.1115 10.13542 0374 0374 0374	-1.4392 -24.2193 -24.2193 -25.1382 -36.4726 -26.9535 -14.3498 -14.3498 -12.9158 -11.6210 -11.4135 -1.4135 -3.0490 -1.8029 -2326

Basic Load Case E2 : MIN.DEAD + WIND Support Reactions

C2-11-3		type of the second	<u></u>
TMIOL	X FORCE	Z FORCE	Y MOMENT
	(kN)	(EN)	(KNm)
1	-11.8827	-16.9829	.0000
11	-3.3533	`-2.7466	

Basic Load Case E2 : MIN.DEAD + WIND Load Balance

DALKA	X LINEAR (EN)	Z LIMIAN (LN)
1 EXTERNAL LONDS SUIT 2 REACTIONS SUIT	15.2360 -15.2360	19.7296 -19.7296

PAGE JOB NO. RUN NO. AUTHOR DATE

ÉMF 30/1/92

FACKAGING FRODUCTS LTD. 19m Fortal Frame

(c) ENCAD SYSTEMS LTD. 1991 Data File : PORTAL

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 Units: S.I. METRIC (Steel)

<u>Pasic Load Case</u> E2 : MIN.DEAD + WIND Global Joint Loads from Back-Substitution

JOINT	X FORCE (kN)	Z FORCE (kN)	(kNm)
123456789 10	11.8827 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	16.9829 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 2.7466	.000 .000 .000 .000 .000 .000 .000 .00

DBFL CONSULTING ENGINEERS	PAGE JOB NO. RUN NO.	1 9214 1
PACKAGING PRODUCTS LTD. 12m Portal Frame DEAD + LIVE	AUTHOR DATE	PMF 3/2/92
EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) Units: S.I. METRIC (Steel)	ENCAD SYSTE	EMS LTD. 1991 le : 12mportl

DBFL CONSULTING ENGINEERS

PAGE 2
JOB NO. 9214
RUN NO. 1
PACKAGING PRODUCTS LTD. AUTHOR PMF
12m Portal Frame

PAGE 2
JOB NO. 9214
RUN NO. 1
AUTHOR PMF
DATE 3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel) Data File: 12mport1

Z B1 : Dead & Live

DstXZumumu9kN/m

XStrXZ

PACKAGING PRODUCTS LTD.

1.4E-001 12.17602

DBFL CONSULTING ENGINEERS	PAGE JOB NO. RUN NO.	3 9214 1
PACKAGING PRODUCTS LTD. 12m Portal Frame	AUTHOR DATE	PMF 3/2/92
EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0	(c) ENCAD SYST	EMS LTD. 1991

Units: S.I. METRIC (Steel) Data File : 12mport1

B1 : Dead & Live

	Load Case B Displacemen		Live	 **
JOINT	X LINEAR (mm)	Z LINEAR (mm)	Y ROTATION (rad)	
1 2 3 4	.00000 -3.20530 -1.77994 -1.60047	.00000 15963 17723 -1.94630		. <u> </u>
5 6 7 8 9	02397 .00000 .02397 1.60048 1.77994	-17.37032 -17.64115 -17.37032 -1.94630 17723	.00090 .00000 00337 00246 00169	

DBFL CONSULTING ENGINEERS	PAGE 4 JOB NO. 9214
PACKAGING PRODUCTS LTD. 12m Portal Frame	RUN NO. 1 AUTHOR PMF DATE 3/2/92
EN202: PLANE FRAME/FINITE ELEMENT ANAL Units: S.I. METRIC (Steel)	YSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Data File: 12mport1
Basic Load Case B1 : Dead & Live Joint Displacements	• • • • • • • • • • • • • • • • • • •
JOINT X LINEAR Z LINEAR Y ROTATION (mm) (mm) (rad)	· · · · · · · · · · · · · · · · · · ·
11 .00000 .00000 .00161	

1.7E-002 12.17602 DBFL CONSULTING ENGINEERS

PAGE 5
JOB NO. 9214
RUN NO. 1
RUN NO. 1
AUTHOR PMF
DATE 3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0
Units: S.I. METRIC (Steel)

PAGE 5
JOB NO. 9214
RUN NO. 1
AUTHOR PMF
DATE 3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0
Units: S.I. METRIC (Steel)

Data File: 12mport1

2.7E-002 12.17602

Basic Load Case B1 : Dead & Live

Membe	r End	Forces	-2	
MBR	JOINT	AXIAL Nx (kN)	SHEAR Sz (kN)	MOMENT My (kNm)
1 1 1 2 2 3 3 4 4 5 5	1223344556	44.6441 44.6441 44.6441 14.7598 14.2936 14.2936 10.5640 10.5640 10.0978	-10.1533 -10.1533 -10.1533 -10.1533 43.3397 38.8997 38.8997 38.3797 3.3797 -1.0603	.0000 -63.5597 -63.5597 -70.5655 -70.5655 -45.7580 -45.7580 56.2706 56.2706 56.9702

PAGE JOB NO. RUN NO. 6 9214

PACKAGING PRODUCTS LTD.
12m Portal Frame

AUTHOR DATE

3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991 Units: S.I. METRIC (Steel) Data File: 12mport1

Basic Load Case B1 : Dead & Live Member End Forces

MBR	JOINT	AXIAL Nx (kN)	SHEAR Sz (kN)	MOMENT My (kNm)
6 6 7 7 8 8 9 10 10	6 7 7 8 8 9 9 10 10	10.0978 10.5640 10.5640 14.2936 14.2936 14.7598 44.6441 44.6441 44.6441	1.0603 -3.3797 -3.3797 -38.8997 -38.8997 -43.3397 10.1533 10.1533 10.1533	56.9702 56.2706 56.2706 -45.7580 -45.7580 -70.5655 -70.5655 -63.5597 -63.5597

Basic Load Case B1 : Dead & Live Support Reactions

JOINT	X FORCE	Z FORCE	Y MOMENT
	(kN)	(kN)	(kNm)
1 11	10.1533 -10.1533	44.6441 44.6441	.0000

Basic Load Case B1 : Dead & Live Load Balance

					
ENTR	7	X	LINEAR (kN)	Z	LINEAR (kN)
1 2	EXTERNAL LOADS SUM REACTIONS SUM		.0000		-89.2882 89.2882

DBFL CONSULTING ENGINEERS

PAGE 7

JOB NO. 9214

RUN NO. 1

AUTHOR PMF

DATE 3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0

Units: S.I. METRIC (Steel)

PAGE 7

JOB NO. 9214

RUN NO. 1

AUTHOR PMF

DATE 3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0

Data File: 12mport1

Z B2: Min. Dead & Wind

DstXZL____3kN/m

XStrXZL_____7m

PACKAGING PRODUCTS LTD.

5.0E-001 12.17602 DBFL CONSULTING ENGINEERS

PAGE 8

JOB NO. 9214

RUN NO. 1

PACKAGING PRODUCTS LTD.

12m Portal Frame

PAGE 8

JOB NO. 9214

RUN NO. 1

AUTHOR PMF

3/2/92

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991
Units: S.I. METRIC (Steel)

Data File: 12mport1

Z B2: Min. Dead & Wind

DefXZL____30mm

XStrXZL_____7m

PACKAGING PRODUCTS LTD.

56.06029

	Load Case B Displacemen		ad & Wind
JOINT	X LINEAR (mm)	Z LINEAR)	ROTATION (rad)
1 2 3 4 5 6 7 8 9	.00000 20.65847 21.53334 21.57734 21.23633 21.19107 21.22883 20.95603 20.83986 19.38622	.00000 .05742 .06375 34273 3.02667 3.47559 3.82004 1.12254 .00639 .00576	.00432 .00152 .00101 .00037 00082 00067 00048 .00172 .00200 .00221

DBFL CONSULTING ENGINEERS	PAGE JOB NO. RUN NO.	9 9214 1
PACKAGING PRODUCTS LTD. 12m Portal Frame	DATE	PMF 3/2/92
Units: S.I. METRIC (Steel)	FNCAD SYST	TEMS LTD. 1991 le : 12mport1
Basic Load Case B2 : Min. Dead & Wind Joint Displacements		*-
JOINT X LINEAR Z LINEAR Y ROTATION (mm) (rad)	- · · · · · · ·	, ·
11 .00000 .00000 .00365	• •	

B2: Min. Dead & Wind

My XZLLLL 50kNm

XStrXZL

PACKAGING PRODUCTS LTD.

2.6E-002 12.17602

	and the second s
DBFL CONSULTING ENGINEERS	PAGE 10 JOB NO. 9214 RUN NO. 1
PACKAGING PRODUCTS LTD.	AUTHOR PMF DATE 3/2/92
EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (C)	ENCAD SYSTEMS LTD. 1991 Data File: 12mport1

7:6E-002 12:17602

Basic	Load	Case	B2	:	Min.	Dead &	Wind
Wambar.	- T-A	To Article	50		4.5	52.77	

Member End	Forces		م نید تین در در در
MBR JOINT	AXIAL Nx (kN)	SHEAR Šz (kN)	MOMENT My (kNm)
1 1 2 2 3 3 4 4 5 5 5 6	-16.0578 -16.0578 -16.0578 -16.0578 -2.9677 -3.1126 -3.1126 -4.2718 -4.2718 -4.2718	11,7229 2.3329 2.3329 1.2979 -15.8344 -14.5298 -14.5298 -4.0923 -4.0923 -2.7877	.0000 43.9947 43.9947 45.2474 45.2474 36.0880 36.0880 -8.8507 -8.8507

PAGE DBFL CONSULTING ENGINEERS JOB NO. 9214 RUN NO. 1 1 PMF 3/2/92 AUTHOR PACKAGING PRODUCTS LTD. 12m Portal Frame DATE

EN202: PLANE FRAME/FINITE ELEMENT ANALYSIS-V4.0 (c) ENCAD SYSTEMS LTD. 1991
Units: S.I. METRIC (Steel)

Data File: 12mportl

Basic Load Case B2 : Min. Dead & Wind

Member	End	Forces

MBR JOINT	AXIAL Nx	SHEAR Sz	MOMENT My
	(kN)	(kN)	(kNm)
6 7 7 7 8 8 8 9 9 9 10 10 11	-3.7413 -3.5964 -3.5964 -2.4372 -2.4372 -2.2923 -1.6105 -1.6105 -1.6105	-3.6443 -3.1420 -3.1420 .8764 .8764 1.3787 -2.1358 -1.2043 -1.2043 7.2467	-10.9261 -12.9732 -12.9732 -18.4405 -18.4405 -17.7603 -17.7603 -18.9126 -18.9126

Basic Load Case B2 : Min. Dead & Wind Support Reactions

Support	Reactions		<u> </u>	Table 4 Free
JOINT	X FORCE (kN)	Z FORCE (kN)	Y MOMENT (kNm)	
1 11	-11.7229 -7.2467	-16.0578 -1.6105	.0000	5 ·

Basic Load Case B2 : Min. Dead & Wind Load Balance

ENTRY	Z LINEAR (kN)
	·

17.6683 EXTERNAL LOADS SUM REACTIONS SUM 18.9696 -18.9696 -17.6683

CALCULATION SHEET	Page No.	Project No.
	FD-1	9214
Project Packaging Industries Ltd Industrial Unit	By FILE	Chd.
Section France Design .	Date Jan 192	Date

	.01	430[]][46
CIVI	1 &	STRUCTURA
	ΕN	GINEERS

Frame Design	
1 19m Portae Frame	
1 Stanction Design	**
Ly = 1.5 x 6950 = 5213 mm	
Axiac Load = 64.2 kg (from ratter boarding)	þ. A-9
Add 5-W Stanchion, som beam, side shooting = 6.4 + 1.5 + 6.4 = 14.3 W	
Z F = 64.3+14.3 = 78.6 E	
U = 173.3 Lu-m	Ja. A-9
Try 533 x 210 x 92 kg/m v-B	
$\binom{L}{7}^{\times} = \frac{512}{10452} = \frac{12}{12}$; $\binom{L}{7} = \frac{1213}{1213} = \frac{112.6}{1213}$, <u>b</u> = 34
E = 63.4 m/mm2 ; fre = 140.4 m/m2	
# = 78.6 × 10 ² = 6.66 N/MM ²	
Stir 173.3 × 106 = 1 82.3 N/mm 2	
Se de 63.4 140.4	07.0
Try reducing to EREX RIOX 82 by IN U-E	

CALCULATION SHEET	Poge No.	Project No.
Project	By Frit.	Chd.
Section Design	Date 92	Date

THE SELECT	
1) 10 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1	
(1) = 101452 = Hd; (1) = 2513 = 11d; D = Ha	
(F) 213 F) 4 48.8 T	
pr = 61 m/nm ; fr = 1221 m/mm3	
fe = 78.6 × 102 = 7.6 w / ww.2	
10400	
1070	
fle = 173.8 × 106 = 96.3 m/mm1	
•	
1,862,032	
to + fr = 40 + 96.3 = 0115 + 0.40 = 01	कड ०८:
pr pr 61 137	
=> 532 × 210 × 82 & /m U-E adoquati	
Node: Wind booking and significant	
Marci alla companie alla companie	
Royler Desira	
Λ	
lx = 9552 mm	
Ly = 0,5 x 9232 = 4770 mm	
i.e. between nodes of notter timeing	
Al cours T = Elis La	1- A-9
M : 172.2 KJ . M	
AL Hage F = 24.8 km	
N = 107.1 kw-m => Clark 'ea	1 ,
Try HEAX IAIX 67 to /m U.E	
The second secon	
(1) = 9552 = 52) (1) = 4776 = 116 D = 36	
11/2 185 /F/2 41.2 T	
be = 63 μ/mm ² ; bbc = 140 μ/mm ²	

Page No.	Project No.	
By Au	Chd.	CONSULTING
Date Jan 192	Date	CIVIL & STRUCTURAL ENGINEERS
	By Aug Date Jan 192	By Aut Chd. Date Tan 192

	:
fe = 31.5 × 103 = 3.7 mm4	-
8540	
She = 173.8 x 10 = 138.3 2 /mm2	
1,300,000	
fr + fbc = 8,7 + 138.3 = 0,00+0,95 = 1.01	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	H
Note: Manut at and of hours = 117.8 but -	~
Note: "Torace at	` !
=) fle = 90.6 m/mm2	
1. te + 1/2 = 0.7.1 ok)	
be bbe	
=> 457x191x67 = /m U-E adequate.	
Chock Wind Landing	
conty necessary to chort reversal situation	
Rayter length may be fuely in reversal => by = 955	2
=> \(\frac{1}{2} = \frac{22}{2} : \frac{122}{2} \]	
Thy 41.2	-
b = 18 ~ /mm² ; boc = 56.6 ~ /mm²	
E = 18 w/mm2 ; boc = 56.6 w/mm2	;
At ridge . F = 6,7 km	þ. A-21
At ridge . F = 6,7 km -1m	
	1
fe = 6.7 x 102 = 0.8 D/MMA	
C+28	;
	ī .
fle = 18.7×106 = 12.1 N/mm2	
1,300,000	
$= \frac{1}{2} + \frac{1}{2} = 0.8 + 12.1 = 0.04 + 0.21 = 0.2$	2 0~;
18 56.6	, · · · · · · ·

CALCULATION SHEET	Page No.	Project No.
Project	By AU	Chd.
Section Design	Date Jan 192	Date

.3 Detlection	
Amex = 48.8 mm = 1 0E	h A-6
10 mex 10t. = 48.8 mm = 1 0E!	- p, ~-se -
3.27	
Anox has a 9.3 mm = h ove.	1. A=17
NOS U	
न्पन	
1	
_ _ _	
2 12m Portos France	
1 Stanction Design	
TOTAL STORY OF STORY	
	<u> </u>
lx = 10425 mm	1
Ly = 5213 mm	•
Axiac Load = 44.6 km (from refter loading) 4-24
	,
Add S-w standing cours become side sheeting	
= 4.7 + 1.5 + 3.5 = 14.5 12	
based on HETX 191X67 U-B	
School Be Man A 1 (20 C)	
No.	-
5! For a 44,6414,5 = 59,1 km	
4 = 40.6 W-M	
A . 40' 8 ET/	
Try HOBX 178 X SH by /m U-B. (although 457 X)	191 x 67 1/2W
11/ 10/10= (5) - 50/0 100 100	34
A = 1045 = 63; $ A = 5313 = 135$; $ A = 5313 = 135$	24 '
: (r)x 165 (r)y 285 T	:
1 10 11 11 11 11 11 11 11 11 11 11	
b = 49 w / mm2) bbc = 120.5 0/mm2	
fc = Eq.1 × 102 = 8.6 0) mm	
6840	
0700	
fle = 70.6 × 10 = 76.2 a/ mm	į
925,000	
	1

CALCULATION SHEET	Page No.	Project No.
Project	By PUE	Chd.
Section Doctor	Date 192	Date

CONSULTING
GIVIL & STRUCTURAL
ENGINEERS

	1
fc + fbc = 816 + 76.3 = 0.184-0.62 = 0.8	31 OK!
tor bending etc. but must about deflection (see below)	
Clock Wind Loading	
Pather Dasign	•
Ly = 6032 mm Ly = 0.5 x 6032 = 3016 mm i.e. between noder of tafter beneing At rance F = 14.8 km U : 70.6 km-m	6. 4-27
At the F = 10.1 kg H = 57.0 kg.m = chot 'e	1
THE HOEK HAKEL FOR U-E (C: 1/2-1-) (1) = 6030 = 36.6; (4) = 3016 = 48; 2: 37 (7) x 165 (8) 285	
F= 14.8 × 103 = 2.2 + /mm ² = 1060/mm ²	
SLE = 70.6×106 = 76.3 a /mm² 925,000	
\$c + \(\frac{4}{5}\)c = 2.2 + 76.3 = 0.02 + 0.44 = 0.48	ok!

CALCULATION SHEET	Page No.	Project No
Project .	By FUE	Chd.
Section Design	Date Jan 192	Date

Clark Brid Loading
Only recessary to chart reverses situation
=> (+) = 6022 = 156 => (+) = 6022 = 156
=) 11/ = 6032 = 156
(F)v 38.5
b= 88 0/mm2; b= 980 mm2
DE = 280 / WW.
Near saver F = 2.4 km
H = 18.4 m -w
$fc = 5.\pi \times 10_3 = 0.4 \text{m/m}_3$
6840
10040
for = 18.4 ×10" = 19.9 N. N. 2
925,000
·
1c + 5c = 0.4 + 19.9 = 0.21 OK!
b ba 38 98
=> 406x 178x 54 to /m U-E more than
adequate for known the but must
about defloction (see below).
Deflection -
Amax = 17,6 mm = 1 OK! 6.4-25
681
1 max 1 = 21,6 mm = 1 dc. b. 1-20
322

CALCULATION SHEET	Page No.	Project No.	一步的
Project	By PUE	Chd.	CONSULTING
Section Decign	Date 92	Date	CIVIL & STRUCTURAL ENGINEERS
3 Purlms			-
2.1 Purlins on 19m Frame.			
1 = 5.5 m		~.	
ye = 9500 = 1580	3 Co.y.	1.6m	
Doad + Live loading	= 1,22 - 0	June = 1.05	hu/m² þ.L-2
	0.2)× 0.65	- 0,2	\$ 1-3
Use King-ton Overlate Pu	rin System	for car I my	
End Eng 178.15 X Tat, Ray 178.15	(* Use 1:	tor 1.26 k	=== 1 19
Total utrift on furlin	·		
will control socrod	can tout	ee 15,16 l	U OK!
		,	F. 12
1.2 Parlins on 12m France			
l = 6m			
4 = 6000 = 1500	1,5,	X	•
Dood + Live = 1.05	ke /m	₄	
12 mg April = (5,0+00)			m)m2 +. r-4
(total on fruston = 1,2	zriisk P =	(بط ۱۱۱۱	

CALCULATION SHEET	Page No.	Project No.	
Project	By AU	Chd.	CONSULTING
Section Design	Date Jan 42.		CIVIL & STRUCTURAL ENGINEERS
the Kingston Overla	- 1.48.0.5		
End Bay 178. The Roys 178.	15	at 1.6 c/c)	Lington p. 9
take 13.65 kg	<u> </u>		b. 12
14 Sheeding Rails -			
41 Shehn Pails on 1	9m France &	12 m France	
Take tails at	1.8m =/c. 1.8m =/c. 1.06 Lo /m2 0.93 "	light local liber Clacking Ra Forcesie Forcesie	L 54.8
Double Ston , With 35mm Po	Lorier 1.8m span ncl. Thicknes	(0,52/	0.4)
	2.53 premue 2.57 suction		

	· · · · · · · · · · · · · · · · · · ·		APPLIED LOADS, KN/SQ, METRE.												
F	Section	Section type	Total U.D.L.					Centres		ns in me	tres 2.4	2.6	2.8	3	
Span metres	type End Bay	Int Bays	kN	1	1.2	1.4	1.6	1.8	2	2.2			0.53	0.50	_
5.5	141.15	141.15	8.191	1.49	1.24	1.06	0.93	0.83	0.74 0.79	0.68 0.72	0.62 0.66	0.57 0.61	0.57	0.53	
5.5	141.16	141.15	8.709	1.58	1.32 1.48	1.13 1.26	0.99 1.11	0.88 0.98	0.89	0.80	0.74	0.68	0.63	0.59	
5.5	141.18	141.15	9.737	1.77 1.95	1.63	1.40	1.22	1.09	0.98	0.89	0.81	0.75	0.70	0.65	
5.5	141.20	141.15	10.752					-	1.01	0.92	0.84	0.78	0.72	0.67	
5.5	178.15	178 <u>.15</u>	11.085	2.02	1.68	1.44	1.26 1.37	1.12 1.22	1.01 1.10	1.00	0.92	0.85	0.78	0.73	
<u>5.5</u> 5.5	178.16	178.15	12.087	2.20 2.56	1.83 2.13	1.57 1.83	1.60	1.42	1.28	1.16	1.07	0.98	0.91	0.85	
5.5	178.18	178.15	14.081 16.067	2.92	2.43	2.09	1.83	1.62	1.46	1.33	1.22	1.12	1.04	0.97	
5.5	178.20 178.22	178.15 178.18	18.059	3.28.	2.74	2.35	2.05	1.82	1.64	1.49	1.37	1.26	1.17	1.09	
5.5 5.5	178.22	178.20	21.041	3.83	3.19	2.73	2.39	2.13	1.91	1.74	1.59	1.47	1.37	1.28	
				2.75	2 .29	1.96	1.72	1.53	1.37	1,25	1.14	1.06	0.98	0.92	
5.5	202.16	202.16 202.16	15.099 17.721	3.22	2.69	2.30	2.01	1.79	1.61	1.46	1.34	1.24	1.15	1.07	
5.5	202.18 202.20	202.16	20,339	3.70	3.08	2.64	2.31	2.05	1.85	1.68	1.54	1.42	1.32 1.49	1.23 1.39	
5.5 5.5	202.20	202.18	22.947	4.17	3.48	2.98	2.61	2.32	2.09	1.90	1.74	1.60	. 1.43 	1.35	
			22.120	4.03	3.36	2.88	2.52	2.24	2.02	1.83	1.68	1.55	1.44	1.34	
5.5	233.18 233.20	233.18 233.18	22.179 25.639	4.66	3.88	3.33	2.91	2.59	2.33	2.12	1.94	1.79	1.66	1.55	
5.5	233.20	233,16			·		====	· · · · ·					Array 19	<u> </u>	
	5	141.15	6.839	1.14	0.95	0.81	0.71	0.63	0.57	0.52	0.47	0.44	0.41	0.38	
6	141.15 141.16	141.15	7.272	1.21	1.01	0.87	0.76	0.67	0.61	0.55	0.51	0.47	0.43	0.40 0.45	
6 6	141.18	141.15	8.131	1.36		0.97	0.85	0.75	0.68	0.62	0.56 0.62	0.52 0.58	0.48 0.53	0.43	
6	141.20	141.15	8.978	1.50	1.25	1.07	0.94	0.83	0.75	0.68				_	
		178.15	10.126	1.69	1.41	1.21	1.05	0.94	0.84	0.77	0.70	0.65	0.60	0.56	
6 6	178.15 178.16	178.15	11.043	1.84	1.53	1.31	1.15	1.02	0.92	0.84	0.77	0.71 0.82	0.66 0.77	0.61 0.71	
6	178.18_	178.15	12.866	2.14	1.79	1.53	1.34	1.19	1.07	0.97 1.11	0.89 1.02	0.82	0.77	0.82	
6	178.20	178.15	14.682	2.45	2.04	1.75	1.53 1.72	1.36 1.53	1.22 1.38	1.25	1.15	1.06	0.98	0.92	
6	178.22	178.18	16.504	2.75 3.21	2.29 2.67	1.96 2.29	2.00	1.78	1.60	1.46	1.34	1.23	1.14	1.07	
6	178.25	178.20	19.231							4.05	0.06	88.0	0.82	0.77	
6	202,16	202.16	13.799	2.30	1.92	1.64	1.44	1.28	1.15 1.35	1.05 1.23	0.96 1.12	1.04	0.96	0.90	
6	202.18	202.16	16.197	2.70	2.25	1.93 2.21	1.69 1.94	1.50 1.72	1.55	1.41	1.29	1.19	1.11	1.03	
6	202.20	202.16	18.593	3.10 3.50	2.58 2.91	2.50	2.19	1.94	1.75	1.59	1.46	1.34	1.25	1.17	
6	202.22	202.18 202.20	20.977 24.522	4.09	3.41	2.92	2.55	2.27	2.04	1.86	1.70	1.57	1.46	1.36	
6	202,25							1.88	1.69	1.54	1.41	1.30	1.21	1.13	
6	233.18	233.18	20.277	3.38	2.82 3.26	2.41 2.79	-2.11 -2.44	2.17	1.95	1.78	1.63	1.50	1.40	1.30	
6	233.20	233.18	23.444 26.599	3.91 4.43	3.69	3.17	2.77	2.46	2.22	2.02	1.85	1.71	1.58	1.48	
6	233.22 233.25	233.18 233.20	31,323	5.22	4.35	3.73	3.26	2.90	2.61	2.37	2.18	2.01	1.86	1,74	
6	233.23	233.20	J.D.				==:								
	178.15	178.15	9.313	1.43	1.19	1.02	0.90	0.80		0.65	0.60	0.55	0.51	0.48	
6.5 6.5	178.15	178.15	10.156	1.56	1.30	1.12	0.98	0.87	0.78	0.71	0.65 0.76	0.60 0.70	0.56 0.65	0.52 0.61	
6.5	178.18	178.15	11.835	1.82	1.52	1.30	1.14	1.01	0.91 1. 04	0.83 0.94	0.76	0.80	0.74	0.69	
6.5	178.20	178.15	13.507	2.08	1.73	1.48 1.63	1.30 1.42	1.15 1.26	1.14	1.03	0.95	0.88	0.81		
6.5	178.22	178.16	14.789	2.28 2.56	1.90 2.14	1.83	1.60	1.42	1.28	1.17	1.07	0.99	0.92	0.85	
6.5	178.25	178.18	16.668							0.89	_ 0.81	0.75	0.70	0.65	
6.5	202.16	202.16	12.695	1.95	1.63	1.40	_1.22	1.09 1.27	0.98 1.15	1.04	0.96	0.73	0.82	0.76	
6.5	202.18	202.16	14.904	2.29 2.63	1.91 _, 2.19	1.64 1.88	1.43 1.65	1.46	1.32	1.20	1.10	1.01	0.94	88.0	
6.5	202.20	202.16	17.109 19.305	2.63 2.97	2.48	2.12	1.86	1.65	1.49	1.35	1.24	1.14		0.99	
6.5	202.22 202.25	202.18 202.20	22.571	3.47	2.89	2.48	2.17	1.93	1.74	, 1. 58	1.45	1.34	1.24	. 1.16	
6.5						2.05	1.79		1.44	1.31	1.20	1.10		0.96	
6.5	233.18	233.18	18.663 21.581	2.87 3.32		2.05	2.08		1.66	1.51	1.38	1,28	1.19	: 1.11	
6.5	233.20	233.18 233.18	24,488	3.77		2.69	2.35		1.88	1.71	1.57	1.45		1.26	
6.5	233.22 233.25		28.839	4,44		3.17	2.77	2.46	2.22	`2.02	1.85	1.71	1.58		
6.5 6.5	233.30		36.035	5.54		3.96	_3.46	3.08	2.77	2.52	2.31	2.13	1.98	1.85	
			24.989	3.84	3.20	2.75	2.40	2.14	1.92	1.75	1.60	1.48	1.37		
6.5	263.20 263.22		28.475	4.38			~ 2.74	2.43	2.19	1.99	1.83	1.68	1.56		
6.5 6.5	263.22 263.25		.33.693	5.18	4.32	3.70	3.24	2.88		2.36	2.16	1.99	1.85 2.14	1.73 1.99	
6.5	263.28		38.892	5.98			3.74	3.32		2.72 2.96	2.49 2.71	2.30 2.51	2.14	2.17	
6.5	263.30		42.353	6.52					 -	:			7		
					_		- : :			-					

Kingspan Overlap Purlin System

Wind Uplift Load Tables

Nett Loads including Purlin Weight kN

The load tables for Kingspan Zed Purlins are relevant only when fitted in accordance with instructions given in this manual.

The loads given in the tables are for the net wind uplift to which the dead load of the cladding system should be added. The self weight of the purlin has been included.

The loads given in the tables have been confirmed by full scale tests and calculated in accordance with BS 5950: Part 5: 1987 using a load factor of 1.4. For roof slopes in excess of 25° please contact our technical department.

Section End Bay Int. Bay		1.15 1.15		1.16 1.15		1.18 1.15		1.20 1.15		8.15 8.15	178 178	
Span metres	Numbe 1	r of Sag R 2	ods 1	2	1	2	1	2	1-,	2	1	2
4 4.5 5 5.5 6 6.5 7	12.485 11.125 10.040 7.795 6.590	13.68 12.19 11.00 8.54 7.22	13.547 12.071 9.980 8.289 7.007	14.84 13.22 10.93 9.08 7.68	15.653 13.717 11.158 9.268 7.835	17.15 15.02 12.22 10.15 8.58	14.24 12.69 11.46 10.23 8.65	15.59 13.90 12.55 11.21 9.48	16.323 14.540 13.118 11.957 10.992 9.814 8.508 7.457	17.88 15.93 14.37 13.10 12.04 10.75 9.32 8.17	20.703 .15.845 14.294 13.029 11.977 10.440 - 9.051 7.933	22.68 17.36 15.66 14.27 13.12 11.44 9.91 8.69
Section End Bay Int Bay	178 178		178 178		178 178	3.22 3.18	17	3.25 8.20	202	2.16	202. 202.	18
Span metres	Number 1	of Sag Ro 2	ods 1	. 2	1	2	1	2	1	2	1	2
4 4.5 5 5.5 6 6.5 7 7.5 8 8.5	20.703 18.440 16.634 15.159 13.646 11.683 10.128 8.88	22.68 20.20 18.22 16.60 14.95 12.80 11.09 9.72	23.607 21.025 18.965 17.282 15.081 12.911 11.194 9.813	25.86 23.03 20.77 18.93 16.52 14.14 12.26 10.75	21.25 18.95 17.09 15.58 14.33 13.27 12.25 10.73	23.28 20.76 18.71 17.06 15.69 14.53 13.41 11.76	24.74 22.04 19.89 18.13 16.67 15.44 13.80 12.10	27.10 24.14 21.79 19.86 18.26 16.92 15.12 13.25	22.173 19.747 17.811 16.230 14.917 13.807 12.861 11.685 10.327 9.205	24.29 21.63 19.51 17.78 16.34 15.12 14.09 12.80 11.31 10.08	20.878 19.024 17.482 16.181 14.949 13.085 11.564 10.307 9.259	22.87 20.84 19.15 17.72 16.37 14.33 12.67 11.29 10.14
Section End Bay Int. Bay	202 202		202 202	.22	202 202			3.18 3.18	233 233	.20	233. 233.	22 18 .
Span metres	Number 1	of Sag Ro 2	ods 1	2	1	2	1	2	1	2	1	2
5 5.5 6.5 7 7.5 8 8.5 9	23.943 21.814 20.044 18.550 16.532 14.470 12.789 11.400 10.239	26.22 23.89 21.95 20.32 18.11 15.85 14.01 12.49 11.22	26.992 24.591 22.594 20.901 18.099 15.843 14.003 12.482 11.211	29.56 26.93 24.75 22.89 19.82 17.35 15.34 13.67 12.28	22.84 21.18 19.61 18.27 17.12 15.80 14.08 12.65	25.02 23.20 21.48 20.02 18.75 17.31 15.43 13.86	23.745 21.815 20.186 18.794 17.591 16.541 15.543 13.937 12.580	26.01 23.89 22.11 20.59 19.27 18.12 17.02 15.27 13.78	27.421 25.191 23.307 21.697 20.306 19.092 17.199 15.421 13.921	30.03 27.59 25.53 23.77 22.24 20.91 18.84 16.89 15.25	28.555 26.419 24.951 23.012 21.172 18.842 16.894 15.252 13.853	31.28 28.94 26.93 25.21 23.19 20.64 18.50 16.71 15.17

Kingspan Sleeved Sheeting Rail System

Load Tables Cont.

			Total				APPLIED	LOADS.	kN/5Q.1	VIETRE.			
Span	Section	Load	U.D.L.			-	Centres o						_
metres	type	type	kN	1	1.2	1.4 1.6	1.8	2 :	2.2	2.4	2.6	2.8	3
6	141.15	Pressure	6.733	1.12	0.94	0.80 '0.70	0.62	0.56	0.51	0.47	0.43	0.40	0.37
6		Suction	6.147	1.02	0.85	0.73 0.64	0.57	0.51	0,47	0.43	0.39	0.37	0.34
6	141.16	Pressure	7.334	1.22	1.02	0.87 0.76	0.68	0.61	0.56	0.51	0.47	0.44	0.41
6		Suction	6.696	1.12	0.93	0.80 0.70	0.62	0.56	0.51	0,47	0.43	0.40	0.37
6	141,18	Pressure	8.521	1.42	1.18	1.01 0.89	0.79	0.71	0.65	0.59	0.55	0.51	0.47
6		Suction	7.781	1.30	1.08	0.93 0.81	0.72	0.65	0.59	0.54	0.50	0.46	0.43
6	141.20	Pressure	9.701	1.62	1.35	1.15 1.01	0.90	0.81	0.73	0.67	0.62	0.58	. 0.54
6		Suction	8.856	1.48	1.23	1.05 0.92	0.82	0.74	0.67	0.62	0.57	0.53	0.49
6	178.15	Pressure	8.924	1.49	1.24	1.060.93	0,83	0.7,4	0.68	0.62	0.57	0.53	0.50
6 .		Suction	8,148	1.36	1.13	0.97 "0.85	0.75	0.68	0.62	0.57	0.52	0.49	0.45
6	178.16	Pressure	9.766	1.63	1.36	1.16 1.02	0.90	0.81	0.74	0.68	0.63	0.58	0.54
6		Suction	8.916	1.49	1.24	1.06 0.93	0.83	0.74	0.68	0.62	0.57	0.53	0.50
6	178.18	Pressure	11.425	1.90	1.59	1.361.19	1.06	0.95	0.87	0.79	0.73	0.68	0.63
6		Suction	10.431	1.74	1.45	1.24 1.09	0.97	0.87	0.79	0.72	0.67	0.62	0.58
6	178.20	Pressure	13.061	2.18	1.81	1.55 1.36	1.21	1.09	0.99	0.91	0.84	0.78	0.73
6		Suction	11.924	1.99	1.66	1.42 1.24	1.10	0.99	0.90	0.83	0.76	0.71	0.66
6	178.22	Pressure	14.686	2.45	2.04	1.75 1.53	1.36	1.22	1.11	1.02	0.94	0.87	0.82
6		Suction	13.408	2.23	1.86	1.60 1.40	1.24	1.12	1.02	0.93	0.86	0.80	0.74
6	178.25	Pressure	17.062	2.84	2.37	2.03 1.78	1.58	1.42	1.29	1.18	1.09	1.02	0.95
6		Suction	15.578	2.60	2.16	1.85 1.62	1.44	1.30	1.18	1.08	1.00	0.93	0.87
6	202.16	Pressure	12.698	2.12	1.76	1.51 1.32		1.06	0.96	88.0	0.81	0.76	0.71
6		Suction	11.593	1.93	1.61	1.38 <u>1.21</u>	1.07	0.97	0.88	0.81	0.74	0.69	0.64
6	202.18	Pressure	14.932	2.49	2.07	1.78 _ 1.56		1.24	1.13	1.04	0.96	0.89	0.83
6		Suction	13.633	2.27	1.89	1.62 1.42	1,26	1.14	1.03	0.95	0.87	0.81	0.76
6	202.20	Pressure	17.142	2.86	2.38	2.04 _ 1.79	1.59	1.43	1.30	1.19	1.10	1.02	0.95
6		Suction	15.651	2.61	2.17	1.86 1.63	1.45	1.30	1.19	1.09	1.00	0.93	087
6	202.22	Pressure	19.319	3.22	2.68	2.302.01	1.79	1.61	1.46	1.34	1.24	1.15	1.07
6		Suction	17.638	2.94	2.45	2.10 1.84	1,63	1.47	1.34	1.22	1.13	1.05	0.98
6	202.25	Pressure	21.998	3.67	3.06	2.62 2.29	2.04	1.83	1.67	1.53	1.41	1.31	1.22
6		Suction	20.084	3.35	2.79	2.39 2.09	1.86	1.67	1.52	1.39	1.29	1.20	1.12
6	233.18	Pressure	19.158	3.19	2.66	2.28 2.00		1.60	1.45	1.33	1.23	1.14	1.06
6		Suction	17.492	2.92	2.43	2.08 _ 1.82	1.62	1.46	1.33	1.21	1.12	1.04	0.97
6	233.20	Pressure	22.132	3.69	3.07	2.63 2.31	2.05	1,84	1.68	1.54	1.42	1.32	1.23
6		Suction	20.208	3.37	2.81	2.41 2.11	1.87	1.68	1.53	1.40	1.30	1.20	1.12
6	233.22	Pressure	25.072	4.18	3.48	2.982.61	2.32	2.09	1.90	1.74	1.61	1.49	1.39
6		Suction	22.891	3.82	3.18	2.73 2.38	2.12	1.91	1.73	1.59	1.47	1.36	1.27
6	233.25	Pressure	29.412	4.90	4.09	3.50 3.06	2.72	2.45	2.23	2.04	1.89	1.75	1.63
6		Suction	26.853	4.48	3.73	3.20 - 2.80	2.49	2.24	2.03	1.86	1.72	1.60	1.49

	T	Page No.	Project No.	USD IEL
Project		By RUE	Chd.	CONSULTING
Section		Date	Date	CIVIL & STRUCTURA
Section Trance Do	s <u>ig</u> n	Jen 192		ENGINEERS
		 		
			 	
Gable Ende				
Deign '	wet 19m for	one end		
		· 	 ,	
c/c care	inns = 6.5.	m (say)		
Poachion	to Euro	Deen		
= 1,23 >	3 + 0.2 x 3	2 + 0.2	<u> </u>	p. 6-2
	side s	Lasting 5-	٠٥	
= 4.34	Es /m	-		
		···· · · · · · · · · · · · · · · · · ·		
From was	nd toler			
<u>udl = </u>	0,65 x 1 (Say)	20,65	lw/m	
Point 10	ad ! Max. co	e. ht. =	6 A M	
		ريد. = ٥	105×63 = H	1 km/m
	. 4= 1	1.1 x 6.92 /8	= 24.4 12	1 '
		LIX67/2	= 14.1 60	
	ZF. 14.7-Zr	ZF.4		
	3.2 11.	5.5.		
		1		
			17 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
j	i l			
	i t	, j		
				•
	1211 × 6 22 /2 -	2151-	AA	
Mx-x = L	1.34× 6.3 ² /8 =	21.5 hu-		
	1.34×6.3 ² /3 =	21.5 hu-	<u>~</u>	
Mx-x = 1 My-y ::	1.34×6.32/8 =	البرالحت		
	6,65h/n	114.12		
. My-y :	6,65h	1.55	,	
. My-y :	6,65h/n	1.500	٠. دیا ه.	
. My-y :	6,65h/ 8,2m	0. 1.500	,	
. My-y :	6,65h/ 8,2m	1.500	,	
. My-y :	6.1 h	0. 1.500	,	

In trans Dorign Ny-y = 6.1 x 3.2 - 0.6 \(\) x = 6300 Thy 203 x 203 x 46 \(\) = 6800 = 42 The 88.1 Abe = 165 p/mm ² Ste = 21.5 x 106 + 16.7 \(\) 151	= 1600	9214 Chd. Date 6.2 W-M (c/c further les see b. 15)	CONSULTING CIVIL & STRUCTURAL ENGINEERS
Truma Decign Ny-y = 6.1 × 2.2 - 0.6 × 2.2	72/2 = 1 = 1600 - C (A	6 2 W-M (c/c fourling	ENGINEERS
THY 203 × 203 × 46 kg/m U THY 203 × 203 × 46 kg/m U THY 203 × 203 × 46 kg/m U THY 200 = 72 / 4 = THY 2012 × 100 × 16.7. THY 2012 × 100 × 121 THY 2012 × 100	= 1600 -	(c/c furth	
THY 203 × 203 × 46 kg/m U THY 203 × 203 × 46 kg/m U THY 203 × 203 × 46 kg/m U THY 200 = 72 / 4 = THY 2012 × 100 × 16.7. THY 2012 × 100 × 121 THY 2012 × 100	= 1600 -	(c/c furling	
THY 203 × 203 × 46 Eg/m U = 6200 = 72 = 5 = 620 = 72 = 5	- <u>c</u> (A)	12 do soc 6 15	()
1) = 6200 = 72 ; (1) = (1) = 6200 = (1) =	1600 =		
Ste = 162 D/MM ? Ste = 162 D/MM? Ste = 162 D/MM? Clock Hole d i dhais Clock Hole d i dhais Clock Hole d i dhais		211.5	1
Sec = 162 A MM? Sec = 162 A MM? Clock Hole A 1 A baise Clock Hole A 2012 FH320 X #320			
Ste = 002, PND = 310 A D OOZ, PND Steel 4000 SERVY SCINZEHVSSO X 3 3 A	. —		
21 002, PNU 21004 L D 340U 400D 22FH Y ECHYZFHYZJO X 3 3 D	/106 =	44.9 + 10±1.2	155.2 B MM
2 FH Y GOINZ FHYZ3,0 Y 3 3 A	, <u>a.o</u>	1	021
2 FH Y ECHYZFHYZDIO X 3 3 A	e 440e	>	F.12
234 x 205, wax 1,540 x 107	- 14.1 ×	E 22 FH × E 61	3x 1550 - 4 /1550 + 4750 4750
エ	-	1 0K	(1,33)
= 1,4 + 8,4 = 9,	8 mm =	पश्चम	Son / 34
Internal Columns	the U	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Lord to Cal. = Fr =	4.84×6.8 +	0.2x6.2x 5	WF.48 = 81.7 W
M (ma) = 24.4 bo-m			b.12
k = 6900 mm ; l	y = 180	smm (c/c	rates)
WH 205×138×25. Fa	1m 3	-e	· ·
V = 5 = 7 5 = 2			· · · · · · · · · · · · · · · · · · ·
THE RSHX 14L X31 15	/m u-	<u>e</u>	
$\frac{1}{\sqrt{201}} = \frac{1}{\sqrt{201}} = \frac{1}{\sqrt{201}}$	= 1800 :	21	
p= = 120 2/ MANY; p	53 'Z		

CALCULATION SHEET	Page No. FD - 14	Project No.			
Project	By PUF	Chd.		CONSULTIN	
		Date	- civ	/IL & STRUCT	
Section Trave Docton	Date Jan 92	Dole		ENGINEER	5 .
353,000	= /mm2				
fr d flee = 817 4	- 69.1 =	0,49			
fr. pbc 120	165		-		
354 x 205,000 x 4440			n 0k	b. 12	
Corner Columns	······································	····			
Take Mrx = Myor =	24.4 =	12.2 hu.	m (ap	forax)	
Take Mrx = Myor =	Z4.4 =	12.2 hu.	-m (ap	to 15	
Take Max = Nyoy =	3	12.2 hu.	-m (ab	1,	
Try 203x 203x 46 19/4	2 ~ U-E			†.T2	-2 lw.
Ft = 12.2 × 106 +	13.2 × 10			†.T2	2) 100
(1) = 6300 = 72; (1) = 6300 = 72; (1) = 6300 = 72; (1) = 6300 = 72;	2 ~ U-E	£ 27.2	÷ 80.8	†.T2	2)~
(1) = 6300 = 72 ; 	(4) = 6800 12.2 × 10 151,000	£ 27.2	4-80.8 D =	t . 12	2) 100
(1) = 6300 = 72; (1) = 6300 = 72; (1) = 6300 = 72;	2 2 × 10 1 = 62 = 149 2.9 + 0. 2.9 + 0.	= 27.2 = 128; NW 421; B + 2.1	→ 80.8 D =	+ .12 - 1/22×	
Thy 203x 203 x 46 to / 12.2 x 106 + 149,000 (1) = 6300 = 72 (1) = 6300 = 72 (1) = 6300 = 72	2 2 × 10 1 12.2 × 10 1 12.2 × 10 1 1000 1000 1000 1000 1000 1000 1	= 27.2 = 125; NW 21 F, B + 2.1 Out clothi	→ 80.8 D =	# . T2 # . T2 # . T2	
Try 203x 203 x 46 to / (1) = 6300 = 72 ; (1) = 6300 = 72 ; (1) = 881)	2 - U - E 12.2 × 10 151,000 (4) = 6300 × 51.1 plac = 149 2.9 + 0.	= 27.2 = 125; NW 21 F, B + 2.1 Out clothi	→ 80.8 D =	+ .12 - 1/22×	
Thy 202x 202x 460 to / 12.2 x 106 + 149,000 (1) = 6300 = 72 (1) = 8811 Take arise level = 1 arise = 3.8 p	2 2 × 10 1 = 62 = 149 2.9 + 0. 2.4	= 27.2 = 125; NW 21 F, B + 2.1 Out clothi	→ 80.8 D =	+ .12 - 1/22×	
Ty 203x 203 x 46 tg/ = 12.2 x 106 + 449,000 (1) = 6300 = 72 (1) = 8811 Take axing Level =	2 2 × 10 1 = 62 = 149 2.9 + 0. 2.0	= 27.2 = 125; NW 21 F, B + 2.1 Out clothi	→ 80.8 D =	+ .12 - 1/22×	

will have additioned by due to

proche

CALCULATION SHEET	Page No.	Project No.	USUEL
Project	By OUF	Chd.	CONSULTING
Section Trans Douber	Daie San '92	Date	GIVIL & STRUCTURAL ENGINEERS
			*
4 Reflex Level Bracing		-	
7.1 19m France			
Gable Francisco		1	
5489		Z Z	220
Parlae		2FS	
प्रवंक प्रवंक प्रवं	02FY 02	<u> </u>	
19000			
2.24 × 19 = 43 La	· ware =	0.65 x 6.9/2 =	= 2124 Link
Pool Frictional Brog = 2	هد.		b. L-3
	· · · · · · · · · · · · · · · · · · ·		
1	· L.	o . =	
8,25 16,5 16,5	2,91	8,25	
49.5 60 24.75 4.5			;
332		33 6	
Dock of Hambers			
Gable Francy Ecan (203x2	-3× 46 V-C	:) :	pt 12-13
te = 57.2×103 = 9.7	12 MAN 5	= 113 0	n.n. 2
£880 fr 4 fk = 9.7		£ F01 4	15,18
= 0.03 + 1.32× 113	$\frac{2d}{0} = 18.0$	1201 x20,1 120 BB,	

CALCULATION SHEET	Page No.	Project No.	UKKL
Project	By Put	Chd.	CONSULTING
Section	Date	Date	CIVIL & STRUCTURAL
France Design	Jan '92	j	ENGINEERS

	LIVOINELIX
Main Strut;	= 2500 x 0.85 = 4675 mm
	1 = 2750 × 0.65 = 2287 mm
	3
Fe = 24.75 L	
TEY 178 × 102 PLT	(1) = 2524 = 98
	23.4
=> >= = 8 =/nm2	(x105)
- 24.72F,49 - L	3 = 10.2 4 NW1
2420	
Try 152 x 89 EST	(1) - 2887 - 111.8
	(1) = 2284 = 111.3
3 be = 68 w	1 m m 2
fe: 24 9 Ex	103 = 12.1 H) MW 2 (1 = 1, 11 MM OK!
2,50	
	·
Diagonae Tie:	F = 49,5 km; be = 1550/mm
Area'd = 49.5	K103 = 319 mm2
<u> </u>	
Use Fox Fox	G REA , A = BIE mm ²
3 = 9.94 mm.	= 1 06
	622
1	
Main Tie: FE	= 42,9 km
<u> </u>	
Agan use	FOXFOX 6 RSA,
·	
	41

Project		17 921	A CONTRACTOR OF THE CONTRACTOR
	By Pul	Chd.	CONSULTING
Section Doctor	Date Jan	Date	CIVIL & STRUCTÚR ENGINEERS
2 12m Frame			
8.25m K.5m K	يد اله.5	F 8.25	ب
1			loods as
Care Time	> I<-	<u> </u>	par 6.15
1460		420	1 1
32 pm 11.67 pm	14.5	3m	
24.42	/ 1	/ <u> </u>	
33 km 4.54 W/A2	1150/	335-	>
24,726-2	' 		
24,45		1	
		3m	
		10.17	
Portal			
3m 3m	3m 3	<u> </u>	
All members or pa	- 1941. Fr	OW.	pl. 15-16
	11		
Eaver Boom -			
Tate lx = ly =	515m	6	
Boom must take c	embracion	do vertic	int
Lower ; Fe =			
		, -	
tooks Loosy to	beau		
= 1,23 × 1.6 +	012 × 118	3 4-018	= 1146 km/m
	_	· (&-w)	
(1004)	(chadre	} 	<u> </u>
		r	
My = 1,46x62/8	= 0.6 kg	-W	
Maria Maria		Mer 15	- h = p-1
Horiz Louding to	XCV	O'DEK TIE	- 0,20, M/W
NH = 0.282×62/8	= 2.k1.		

ALCULATION SHEET	Page No. 18	Project No.	UKKU
oject	By Rue	Chd.	CONSULTING
ction Frence Darson	Date 72	Date	ENGINEERS
TH REHX NOKEL 15	/m u-e.		
(1) = <u>6000</u> = 17°	9 ; <u>D</u> :	= 29	
₽ = 29 D MM2 ;		17 Jum's	`
fc = 32 × 102 = 8,25 =	Jmvn ²		
Sbc = 616 × 106 + 3	2.6 × 10 6 =	16.7 + 42.3	3 = 61 n/mm2
fe + flee = 8.25 p flee 1.25x29	+ 61 1.25×30.	= 0,284	10,61 = 0,84 0
	`		
	-		
			-
t			

CALCULATION SHEET	Page No.	Project No.
Project fackaging Industries Lita . — Industries Unit	By	Chd.
Section This to Theor	Date フェ 'マス	Date

CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

	•	
		-
	First Floor	
I_{eff}	Loading	
	•	
	Clark average loading from too block wasti:	
	Σ1 = 6+8+6+1+5 = 26m	
	ZW = 26×2.6×0.1×22 = 148.7 kg	
	A = 8x8+ 7x2+6x2 = 90m2	
	A = 148.7 = 1.65 La /ma	
	90	
	Taking above flux 'corridors' at 4.0 km / m.2	
	=> 5. live = 5.65 kg/m²	
	<i></i>	
	Dorgen for Live = 6,0 Lw /m2	
	Docd:	
	Take 200 slot = 4.8 Lu/m?	
	Services etc. = 110 "	
	218 Fm /w3	
ļ	Gr. 1. OK = 5.8 + 6 = 11.8 km/m2	
,		
	1.46x-11.60x = 17.7 kg/m2	
	7	
	,	

Section			Dot	Jan '92	Date	CIVIL & STRUCTUR
Section Fire	Floor		- 1	5an '92		ENGINEERS
····						
Dector	of Thirt	Floor	Slak.			
· · · · · · · · · · · · · · · · · · ·	6m	10	2 Sm			
	Om_	wall			 -	
		12 belo		3.5~	7	
		l V				:
	C dames	9		3.2.	<u>~</u>	
	r.e. bee	L-M_			· · · · · · · · · · · · · · · · · · ·	
			1 7	 1		
					15 social was over	
25 2012						
wall over				15 W		
	2.75m	<u> </u>	1 1			
			1 1			
			+	4		
بناء	5.5m	5.5 m	2.2.	<u> </u>		
_						
Tako	- 2 may	= 3,5m	· · · · · · · · · · · · · · · · · · ·		·	
Mno	$EI = \chi$.7- × 3·5·	12 =	27 6	- m	1 1
17,77	× = '3	<u></u>				
V	nx = 1=	3,8 × F.1	12 =	31 L	7	
					. ,	· · · · · · · · · · · · · · · · · · ·
Taki.	3 300 00	th scab		······		
7 -	. 5 ⁻²⁰ - 3	2	1 6			
	<u>30 S</u>			7 14 14 1		
K	= 27×10		0.03 =	» Z =	0.95d = 1s	
1	103x 1603	۲ <u>۶</u> ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲			· -	

CALCULATION SHEET	Page No.	Project No.
Project	By Fut	Chd.
Section Fire Floor	Date Jan'9	Date

U= 31 × 102 = 0,19 m /mm 2 OC;
100 2 10-
M = 27 × 10 = 1.05
bd1 102 x 1652
Taxin Perty factor at Euro street = 1.363
2 86x 1.363 = 35.44
d 001,9
11 Lally = 35,44× 160 = 5670 mm orc!
G
Downstand Econ off corner of wall below
J= 6m
Well = 17.7 x 3.5 x 1.1 = 68 Ly /m Say Fo las /m (ind. 5-10.)
M may = 30x 62 /8 = 315 hu-m
V may: 70x6/2 = 210 km
Design as flonged beam, by: bus 600 = 500+1200
1, 1500 = 61 / = 1500
200 = 14
250
300
b = 1500 = 5 ; d = 400 = 2
pm 300 - M 500
=) Bi = 0.12; Bi for Pag = 0.12x32x120x400 = 1/500 M-W
> Mriej = 315 m - m

CALCULATION SHEET	Page No.	Project No.	
Project	By PUF	Chd.	CONSULTING
	Date	Date	CIVIL & STRUCTURAL
Section True Floor	Jan 192	·	ENGINEERS

	7.4	*		
			12-7	<u>-</u>
1 As = 315×106 + 011×35×	300 × 400	(0,45× 40)	7 200	
00H X F8.0	(1100 - 0.13	×,700)		 ,
= 322A WM3		· · · · · · · · · · · · · · · · · · ·		- :.
er willend & A: =	565A WW.	<u>(3727's</u>	<u> 1730 =</u>	2456
		,		
Therease beams width his	You k	o suit		
The company of the country of the co	r.k. a	day.		
pleasant of temperano	<u></u>			
V= 210 × 103 = 11.33 4/11	2			
	-	. 12		 -
400 x 394		2		
100 Az = 100x 2766 = 1	72			
	11 70	W 3		
Fid 400 X 394			-	
	-1-5			
JE = 011/1×3F,0 = 5U	1/44 -			
	· ·			
12 - 12 = 0 1 118 H 144.5.				
, ,				
=> C' : 0'81 x HIO X 12.	1 : 50	1 mm		
NOO (1.33-0.3	()		-	
	/	•		_
he T10's at 250	c/c.			
N = 315 × 10 = 1135				··
1500 × 3943	, , , , , , , , , , , , , , , , , , ,	<u> </u>		
1803 8 31		.		
Tanson Rend , factor = 1.3	262			
TEASIER TELLING 1 TOCKES	 			
1.26 x 20.8 = 26.	. 2	1		
		<u> </u>	:	
d au'd			-	
24 201	= 10.3	sym a		
1. Jalid = 26.2 x 394	\$ 10,2	3 7, m <u>0</u>		
		* 		
			<u> </u>	-
<u> </u>				
				
		•		

....

CALCULATION SHEET	Page No.	Project No.
Project	By PUF	Chd.
Section First Flase	Date 12	Date

		-
1.3	Design of First Floor Ecoms	
1.2.1	Beams at 2.75 m c/c	****
}		
ŀ	1 = 12 m	~.
ŀ	Burns at 2175 m c/c.	
	b = 12000 /3 = 4000	
	65	
	= c/c ribc = 275a	
-	٥٢	
-	= br + 12d1 = 228 + 12 x 200 = 2628	
}	", P = 5.658 ww	
-	, 1 8 = 2320 mm	
	Sarvice Landing Grat Or = 11.8 km /m2	k . 1
-		-
	Borns at 2.75 m e/c	
-	=> Udl = 11.8 x 2.75 x 1.1 = 36 kg/m	
	2	
	Containeity	
	Mmax = 36× 122 = 648. W-m	
	(service) 3	
į Į		
ļ	$\sqrt{\text{max (servic)}} = \frac{26 \times 12}{2} = 216 \text{ b}$	
ļ		
<u> -</u>	Dosign as composite action beam	
ļ	with 2000 thick aroute dock	
	clab.	
, ,		
4		
. (*).		
i L		
-		
-		

CALCULATION SHEET		Page No	Project No.	DRES
Project		By Due	Chd.	CONSULTING
Section The Floor	-	Date Jan 92	Date	CIVIL & STRUCTURAL ENGINEERS
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	3678 =	Ь		
204.9			1	200 = ds
			501,1	= d ₉
		603	.2.	805.5
		_ = _		
		<u> </u>	Cover	
	227,6	* 60		
Try 610 x 229 >	c 101 kg/	m u-8	4	·
21				
Determine of a 1	: A-c			
Monorte of areas	2628 X 3	~	= 3,50H,	000
m 2	15	2		

12900 x 602.2 = 3,884, 190

12900

= 116.8×106+ 408×106+ 757×106+ 1,109×106

12900× 501,1

172,5× 106 MM3

= H.053 × 100 WW.3

207. 9 mm

75.7×10-1-12900 (501.1-207.9

Stech

(concett with

ther in steel

2628×2003 + 2628×200 /207.9-100

15

As x D

N-A

15×12

2623 × 200) × 100

2628×200

15

2890. 8 × 10 = mm+

15 x 2890, 8×10 =

227.9

(P. FCG - C. CCB)

2390,8 4 10 6

CALCULATION SHEET	Poge No.	Project No.
Project	By PUF	Chd.
Section First Floor	Date Jan'92	Date

CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

	•
N = 648 kn-m	
[= 648 × 106 = 3.76 D/HM] = 0.11	
See = 648 × 106 = 8.76 D/HM? = 0.11	700
TO = 7 = 648 K100 = 181 H /WM3	< 165 or
Ser = = 648 × 106 = 161 m/mm2	
factor = for ~ very snace or.	
	,
> 200 slab over 610 x 229 x 101 bg/m v.E	
adequati	
D = 316×103 = 33.8 B/mm2	
10.6x 602.2	
Edge learns at 2.75m c/c	
= 12m.	
b = 2750/2 = 1375mm	
Laading to bean !	
from floor = 11.8 x 2.75 /2 = 16.2 km/m	
The Joseph Control of the Control of	
from wall = 0.315x 22 x 3.1 (avi) = 14.6 ha)	M-2/
51 udl = 16.2 + 146 = 30.8 kg/m	,
MASK (50,7010) = Em. BK122 = EEK had -W	
8	
1 may (20-1/2) = 30.8×12 = 185 kg	
1 may (20-1/2) = 30.8×12 = 185 kg	
1 may (20-1/2) = 30.8×12 = 185 kg	

1.8.2

CALCULATION SHEET	Page No.	Project No.
Project	By Put	Chd.
Section Tirst Tloos	Date Jan '92	Date

CALCULATION SHEET	Page No.	Project No.	UEU II
Project	By Aug	Chd.	CONSULTING
		Date	CIVIL & STRUCTUR
Section First Floor	Date an '92		ENGINEERS
		· · · · · · · · · · · · · · · · · · ·	
	. And	Fig. 1	
tec = 254 × 106	= 4.82 w /my	161 = 0.14 G	-11
Jec = 254 2100		<u></u>	
115 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
fa = 554 × 106	= 145.8 N	NW 3 < 1P2	OK!
Jet puffers 8.8 × 106			
and the same of th			
£ = £ ~ 5m	ه دء عمه	-	
- 52 14 = 51 × 5n			
		- AF	
=> 200 slat over	610 x 229	x 101 kg/1	m u-€
U ok! as before	<u> </u>		-
	y,		
	1		
3 Suffact Erron at Jakers	ac suffert	Line -	_
1		- 明是	
1 = 8.25m	रून •		1 20 -
Lander do herm		***	
Point Locals at 1/2 po	int = 216	ka	6,5
			,
Udl from slob + 6	Ce-2 mas		7
= 11.8 × 3.12 -1. 1 =	21,65 50	A 55 m	M
	, 216 km		
0.11 100	:) [L = ====		
216/2	W. T.G		
216 12			
21642			
216 12			
2.75m 2.75	m 2.75m		
2.75m 2.75 3.75 3.75	m 2.75m		
2F.5 m2F.5 1	m 2.75m	,75m	
2F.5 m2F.5 1	m 2.75m		= 781 W-W
2.75m 2.75 3.75 3.75	m 2.75m		= 781 W-W
25.2 25.2 25.2 27.8 W2F.20 W2F.20 W2F.20 W2F.20 W2F.20 W2F.20	22×11/252 -		= 781 W-W
25.2 25.2 25.2 27.8 W2F.20 27.4 W2F.20 WMAY = 20M/M	22.17.17.25 - 25.1 2 22.4 1.17.25 - 25.1		= 781 W -w

CALCULATION SHEET	Page No.	Project No.	
Project	By PW-	Chd.	CONSULTING
Section Hirt Hose	Date 192	Date	CIVIL & STRUCTURA ENGINEERS
Will be to the second			
13:	75		1
	1,		7
	301.2		200
		1	1-4
Try 610x229x140 by (m.	J-B 1		
	y - 1 - 1		419
			
			1/ Cover
	= 2-802 × COBF	301.2 mm	
15	1" 200		
12 1312 x 300 +	17 652		
7 10- 3 1 10-5	2 /2	م ۱۶۰۰ ما مارس	- (5.2.5.3.1)2
15 × 12 12 12 12 12 12 12 12 12 12 12 12 12	(30) (301.2-100) + 1,	170 4 170	000 (508:2 - 551:2)
- //11 1 7400 0 4- 1	,120 - 764.9)x	عادا	
= (61,1 + 742,2 + 1	· · · · · /·		1
	/		
= 2,688.2 × 106 mm	+		
= 2,688.2 × 106 mm	+		(consate units)
= 2,688.2 × 106 mm	+		(convete units)
= 2,688.2 × 106 mm	+ = 133.9 ·	× 10 p WW3	
= 2,688.2 × 106 mm	= 5.21 × 106	× 10 p WW3	
$= 2,688.2 \times 10^{6} \text{ mm}^{6}$	= 5.21 × 106	mm2 (24	ect units)
$= 2,688.2 \times 10^{6} \text{ mm}^{6}$ $= 2,688.2 \times 10^{6} \text{ mm}^{6}$ $= 2,688.2 \times 10^{6}$ $= 2,688.2 \times 10^{6}$ $= (814 - 301.2)$ $= 481 \times 10^{6} / 132.$	+ - 106 = 138.9 - 106 = 138.9 - 106 = 201x p	mm2 = 0,14.	for \$ 9
$= 2,688.2 \times 10^{6} \text{ mm}^{6}$	+ - 106 = 138.9 - 106 = 138.9 - 106 = 201x p	mm2 = 0,14.	for \$ 9

CALCULATION SHEET	Poge No.	Project No.	Uble
Project	By PUF	Chd.	CONSULTING
Section Hitz E Elest	Dote Jan 192	Date	CIVIL & STRUCTUR,
	- Can 12		ENGINEERS
Support Boom at Ext	ernel Suffort L	a (Yestern	
i.e. otto stancti		ſ	
i.e. outo stanchi	an of portal	Jones.	
1 = 5.5 m	~.		
Looding to bean -			
Single point load a	t mid-spon =	516 km	
Mary = 216 x 5.5	= 297- 29-1	M	
4			
	~ 1		
Do as standard			e.
	254- M-W	-	40,7-9
Support Columns by	First F-loss -		
Centras Celuns			
Centro Celuns	-		
	hed column		
= 216 + 2 × 306.	75 = 830 L	<u> </u>	1549
le ≈ 3.5m		<u>.</u>	
11. 254 × 254 × 3	2 \ /- \ /-	·	
Use 254 x 254 x 7	3 Eq /M 0-C		
Pc = 1210 km			·
	_	<u> </u>	
Clack Stanchiour of	Partal France		
0		· · · · · · · · · · · · · · · · · · ·	
	H FD-1 - 6	<u> </u>	
lof, calculations	••		
Additional Awar Local			

CALCULATION SHEET	Page No.	Project No.
Project	By AVE	Chd.
Section First Floor	Date Jan 192	Date

51 Fz = 432 + 78.6 = 510.6 Ex	þ. F0-1
	•
At love at which additional axial	
load occurs monar has teduced	
to approx. 1783 x 4.05 = 102-5 k2 -m	L. A-9
6.85	1
2.7m	
2.8	
0.2m	
4.05 2.2m	
m2FrJ	
!	
Conservatively take previous effective lighted	
Ir = 10,425 mm) = = = = 218 mm	\$ FD-3
	•
Try SEE X 210 X 101 F2 /m U-E.	
	,
(1) = 10,425 = 48; $(1) = 5212 = 114 D = E1$	
(r)x 218 (T)y 42.6 T	
p = 62 m / wm 3 ; pr = 145 m / mm 3	
L. e 510.6 × 103 = 39.6 m/n.w.1	1
12900	
-fbc = 102.5×106 = 44.6 N/WW.	
2,300,000	
	0.92 061
F= 1 = 29.6 + 11.6 = 0.61+0.32 =	10112 001
The State of the S	
-1 500 - 210 - 1- 1- 1- 1- 1- 0 mul	
(Immore on related, stacker signer	

CALCULATION SHEET	Poge No.	Project No.	
Project	By Put	Chd.	CONSU
Section	Da <u>te</u>	Date	CIVIL & ST
HUE Floor	Jan 192	•	ENGIN

First Floor Coilings	
	·
max, 2 par = 4700 mm.	
Using S.R. 11, 44 x 22 E @ 300	c/sca)
good for "the	."
This based on loading = 0.2+1.5 =	1.8 kg/m/ Se:11
	Table 3
Cailing Forsts bound on 0:25 + 0:3	12 = 0,217 W3
=> may often up contide to the	es v/c
44 x 145 @ 400 c/c (201) gre	d
Jone 1 = HIIM stan.	
Summary -	
Joseff (SCR) at 400 c/c M	ax- Span agi'd.
4n × 112	311914
HH × 125	2.52 m
44 x 150.	3.34 W
## N 202	4.12 M (204)
	414.46 (20-4)
- 1	
!	
	. 19-
<u> </u>	

ļ	CALCULATION SHEET	Page No.	Project No.	少线线		
,	Project Packaging Franktics Lited.	By PUE	Chd.	CONSULTING		
	Section Walls	Date Jan 192	Date	CIVIL & STRUCTURAL ENGINEERS		
	Walk	2017 12		ENGINEERS		
		······································	=======================================			
	Walls					
— —			-			
1.1	100-100-100 2000 01	- Rose of	+ Sheeting -			
	Height above floor = 1	,1 m	-			
	q = 0.43 L /m2			þ. L-3		
	1.40 = 0.0 km/m3					
	H = 0.6 × 1.12 /8 = 0	,091 ku - n	^			
	2 par lest = 102 × 1002	= 1,67×1	00 WM3			
	HI for led = 0.25 × 1.67 × 106 = 0.12 hd-m					
}						
	Two leaves => Mr = 0	134 FM W	77 0,091	Lu-m ot!		
1.5	Support Angle at Head of 10	3 - 100 - 100	Sale			
	Udd to angen (service) =	0.43 × 1.1	/2 = 0,24	My My		
	1 may = 6 m.			!		
1	$N = 0.24 \times 6^2 / 8 = 1.0$	8 ka) -m				
1	10 - 012 20					
1						
Ì	Steadard	< > Shall	= - fixed 4	ec into		
	sls cavity	1 .	tera joint	I I		
	ther		:			
			,			

l				. 122		

CALCULATION SHEET	Page No.	Project No.
Project	By PME	Chd.
Section Walls	Date Jan 192	Date .

力的信息
CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

wall	2007 12	ENGINEER	
	Section 1		-
	West Control of the C	.e. 15	
Take 1x = 6000	<u> </u>		
$\lambda_{ij} = 0$	tied into block up	5-6	
429 OIX ZF X 021 FT	· · · · · · · · · · · · · · · · · · ·	<u></u>	
100	1 D = 15		-
(1) = 6000 = 125	. 1 3 - 13	=	
16) 48:1			
Db = 128.5 2 /mm	^L		_
		·	
flec = 1,08 x 106	= 21 17 /WM3 OK		
51,800		-	
	2 1 2 11 1	0 01-1	-
$Q = Z \times 1.08 \times 6 \times 10$	-F.F1 = "como > "c	1	
284 × 205,000×	Yol x lo3	<u>338</u>	
- 1		- -	•
3 100-100-215 Externac h	\a_{1}(-
2 100-100-212 EXAC N	J. Charles	4.	
		1 46 1 11	
Mar paral size =	Gm long x 6	7	
Subjected (sintly)	an 4 21 das.		
			1
	+ 0'EX5 + 01PEX 111	= 0'Z #7 Ws	by r
<i>C</i> * (6.1	,	1
	}	· ·	
1.40 = 1.4x0.5 =	OITO KW /M 2	-	
1	1		
h = 1,0 ;)	N= 0.25 ≈ 0.5		
	0.214		
1	U.E.R		
	· E		, \
\neq F20.0 = \searrow	•	Table 9(
		€£ £628	<u>; ; [</u>
M HOME = 0.057 X 0	7 × 62 = 1144 M.	~-M	
Zouter leaf = 1.67	×10 6 mm2	b. 1	
touter leaf = 1.64	3	1	
int.	NOOIXOFIE = 3318X	vu *	
		1.6	
	2	1	

CALCULATION SHEET	Page No.	Project No.
Project	By FUE	Chd.
Section Walls	Dan 192	Date

401 XOF. F X 412,0 + 01X Fd.1 X 412,0	Based on
3.5 3.5	EN Elock
= 0.25 + 1.13	
= 1,38 hom ~ approx. 4% under rec	ouire d
copocity => OK!	
CAPORTED	. (5) 1
(Motor At noch this is a temporary dituation if tail	1 TIXED GEEL
215 Solid Internal Saas	
Max, height above floor = 5.2 m	
Mer refers assort from	
hat = 3000 = 15	
$h_{ef} = 3200 = 15$	
Take wase loaded from one side	
=) R = 0.70	
Noting IN (Saleds), JK = 3.6 W/mm?	
Capacity /m length = 0,7 x (1000 x 215) x 3	16 = 155 kg
3.5	
2-15: wack at height = 2.2 + 0.72 =	3 95 m
(to dound)	
10 0.215 x 22 x 1. K x 3.95 = 26 h /m	
" Residual Strangth of 215 in turne	,
wall at grand floor lived	
= 155-26 = 129 km/m (White	<u> </u>
= 92 hu m (Saviu	
	11
;	

CALCULATION SHEET	Page No.	Project No.	DBEL
Project	By PUF	Chd.	CONSULTING
Section	Dotan '92 Date	CIVIL & STRUCTURAL	
Walls			ENGINEERS

1.5 Check 215 Wass at Grand Floor Offices Loading to wass = 17.7 x 3.5 x 1.1 = 68 kg/m p. F. < 129 L /m 1.1 OK! b. 3
Loading to wave = 17.7 × 3.5 × 1.1 = 68 kg/s f. F.
Loading to wave = 17.7 x 3.5 x 1.1 = 68 ha/n \$. F.
() () () () ()
2 129 L (OK)
1.6 Clock 100 Dalls at First Floor Level
Max. Loight to cailing = 2400 mm
pot = 5400 = 54
<u>Fel</u> 100
It loaded from one side , E = 0,167+ B = 0,383
Capacity/m land = 0,382 x (1000 x 100) x 5.0 = 54.7 W/x
J e = 0 , R = 0.53
Capacity /m length = 0.53 × (1000 × 100) × 5.0 = 75.7 kg/
5-0 wase = 011x22x1,4x2,4 = 7,4 by m
Residual Strangth of Walls
Located from mo side (e= E/6): Caposcity = E4.7 - 7.4 = 47.2 Lu/m
Loaded from both sides (e = 0):
Capacity = 35,3 - 7,4 = 68, E/2/M

CALCULATION SHEET	Page No.	Project No. 9214
Project Packaging Industries Ltd.	By PUF	Chd.
Section Foundations	Date Jan 192	Date

CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

Foundations	
Base to Standard Stanction to 19m France -	
Loodcase 1: Fr = 64.2 km	þ. A-10
Loadcon 2: Fr = -16.9 kg	þ. A-21
Exempo Load case 1	
Add 2-w stanction, cours beam, = 14.3 to	k, FD-1
Add 2-w Lac at 210 x 1.5 x 0.5 = 36 kg	72x FV (loadeax 2
Add Eachfill the. Dibox18x2x12 = 32.410	
ZI FV = 64.32 14.32 + 32 · 4 = 147 FP	-
Height form bottom of Stanchian i.e. top of plants, to also formation = 0.75 + 0.5 = 1:25 M	
M' = 24.9 × 1.25 = 31.1 bus-m	
e = H = 81.1 = 0.21 m < D = 0	7.833.
b = 144 ± 31.1 × 6	-
= 49 ± 31.1 = 80 or 18 W/	m2 OK!
Exemire Localesae 2	
A above standlow sow, eaves, shooting, I we beer =	82.7 W

		N	一上上往往
CALCULATION SHEET	Page No.	Project No.	
Project	By PUF	Chd.	CONSULTING
Section		Date	CIVIL & STRUCTURAL
Section	Dole Jan'92		ENGINEERS
	1		
∑ Fr = -16.9 + 82.7 = 65	18 1	——————————————————————————————————————	
M = 11.9 x 1.25 = 14.9 ku-		· · · · · · · · · · · · · · · · · · ·	
19 - 1117 1120			
Righting Honort Up = 65.	8×2 =	62.8	-
T-0.5. = 65.8 = 4.4.	2	· · · · · · · · · · · · · · · · · · ·	
T.O.S. = 65.8 = 4.4.	OKI		
> 1.5 × 2.0 ×	0.20	dequate	
	417 1 7 7 7		
	Fire Flan		
1.2 Rose to Standline Conord b	true 1- har	27	
Only max. loadcase telas	iont: Tr	= 510,6 1	→ b. FF -12
	F	1 = 24,9 E	- A-10
	<u> </u>	86 has	
14 2-12 parc 6 5/4 x 8/0 x 8	118	00 10	
Add broggill @ DIBYIEY RIGHT	χ2 <i>ε</i>	78 W	
E) = 8F + 38 + 112 = 47 13	2 F7		
N= 31.3 kg-m			b.1
M 31.3		·	
e = 31.3 = 0.046 M	~		1
2-7-3	ڪ		
b = 675 ± 31.2x	(_ = 0	utat -	102.7 or 85.3
$b = 675 \pm 31.2 \times 31.2$	<u>م</u>	T - 0. T -	102,4 BT 00:3
> 2,4 x 8,0 x 0,5	Loupaba	<u> </u>	OK!
	and the second second		i i
		· · · · · · · · · · · · · · · · · · ·	
· ·		1	

CALCULATION SHEET	Poge No.	Project No.
Project	By ALE	Chd.
Section	Date Jan' 12	Date

CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

Base to Standard Stanchia to 12m Frame	
Loadcore 1: Fr = 44.6 kg	J. A-28
Loadcase 2: Fx = -16,1 kg	b. A-33
Example Loadcase 1	
Add 2-w starction, som = 14.5 kg	b. ED-4
Add J-w boxe 1.8x1,2 x 0.5 = 25,9 km	
Add backfill etc 0.6x 18x1.8x1,2 = 23,3 km	
5 Fr = 44,6 + 63.7 = 108.8 kg	
M = 10.2 × 1.2 E = 12.75 ho-n	þil
e = H = 13.75 = 0.118 M < D = 0.3	
$b = \frac{108.2}{1.2 \times 1.8} \pm \frac{12.75 \times 6}{1.2 \times 1.8^2} = \frac{50.11}{20}$	
= to or so ky /m²	
Exemple Loadense 2	
As above stanching cours know 5-w, thus book fill ste. = 65,7 to	
: SI FV = -16.1 + 63 7- = H7 L L	·
y = 11.7-x1.25 = 14.6 km - m	
	,

CALCULATION SHEET	Page No.	Project No.
Project	By PM	Chd.
Section	Date V92	Date

	,
Ur = Rectoring Moment = 47.6× 118 = 42.84	
1. F.O.E. = 4284 = 29 OK!	
=> 1,2 × 1,8 × 0,5 adoquate	
Basos to Gable Columns	
Determine Landing to column from He action as fact of wind toward K- bracks.	
Mex. situation is at 44 closer Education	
Sparing of T.E. W.	
480	
34.2 HA-7 6.2 m	
S,S M	
37.2 W 27.7 W	
Size to resist overturning.	
Mm. Fr = 22.3 L	E. FO-14

	LATION SHEET	Rv	FT	Project No. 9214 Chd.	
Project Section-	Foundations		FUF IEN'92	Date	CONSULTING CIVIL & STRUCTURAL ENGINEERS
\$ 0	1 Fr = - 27.2 + 17.14. = 14.1 = 14.1	x 1.8 =	39 4- 3 17.6 L	<u>.</u>	11 EV
	D. C. = 5: 171.6 2 1.8 × 1.8 × 0. 2 Under Struckle	5 adagus		tit Floor	
		X D'E	ogodn		

Dublin County Council Comhairle Chontae Atha Cliath

Planning Department

Bloc 2, Ionad Bheatha na hEireann, Block 2, Irish Life Centre, Sraid na Mainistreach lacht, Lower Abbey Street, Baile Atha Cliath 1. Dublin 1. Telephone. (01)724755 Fax. (01)724896

NOTIFICATION OF DECISION TO GRANT PERMISSION LOCAL GOVERNMENT (PLANNING AND DEVELOPMENT) ACTS 1963-1990.

Decision Order Number: P/ 4832 /91 Date of Decision: 2200 October 1991

Register Reference: 91A/1427 ___ Date Received: 30th August 1991

Applicant : Packaging Industries Limited

Development : Demolition of single storey residential unit to rear of site, erection of single storey warehouse with

associated offices and production area to first floor and separate two storey office development to rear of existing buildings. Permission to include elevational

Location : Fox & Geese, Naas Road, Dublin 22

Floor Area : Sq.Metres

Time Extension(s) up to and including:

Additional Information Requested/Received: //

In pursuance of its functions under the above mentioned Acts, the Dublin County Council, being the Planning Authority for the County Health District of Dublin, did by Order dated as above make a decision to GRANT PERMISSION in respect of the above proposal.

The Ambrose Kelly Group, Fleming Court, Fleming's Place, Dublin 4

Dublin County Council Comhairle Chontae Atha Cliath

Planning Department

Reg.Ref. 91A/1427 Decision Order No. P/ 4832 /91 Page No: 0002

Bloc 2, Ionad Bheatha na hEireann, Block 2, Irish Life Centre, Sraid na Mainistreach lacht, Lower Abbey Street, Baile Atha Cliath 1. Dublin 1.

Telephone. (01)724755 Fax. (01)724896

Subject to the Conditions on the attached Numbered Pages.

NUMBER OF CONDITIONS:- .. Z....ATTACHED.

Signed on behalf of the Dublin County Council.. for Principal Officer

Dublin, County Council Comhairle Chontae Atha Cliath

Planning Department

Reg.Ref. 91A/1427 Decision Order No. P/ 4832 /91

Page No: 0003

Bloc 2, Ionad Bheatha na hEireann, Block 2, Irish Life Centre, Sraid na Mainistreach Iacht, Lower Abbey Street, Baile Atha Cliath 1. Dublin 1. Telephone. (01)724755 Fax. (01)724896

CONDITIONS / REASONS

- 01 The development to be carried out in its entirety in accordance with the plans, particulars and specifications lodged with the application save as may be required by the other conditions attached hereto.

 REASON:To ensure that the development shall be in accordance with the permission and that effective control be maintained.
- 02 That before development commences, approval under the Building Bye- Laws be obtained and all conditions of that approval be observed in the development.

 REASON:In order to comply with the Sanitary Services Acts, 1878-1964.
- 03 That the requirements of the Supervising Environmental Health Officer be ascertained and strictly adhered to in the development.

 REASON: In the interest of health.
- 04 That a financial contribution in the sum of f11384. be paid by the proposer to the Dublin County Council towards the cost of provision of public services in the area of the proposed development and which facilitate this development; this contribution to be paid before the commencement of development on the site.

 REASON: The provision of such services in the area by the Council will

REASON: The provision of such services in the area by the Council will facilitate the proposed development. It is considered reasonable that the developer should contribute towards the cost of providing the services.

- 05 That no advertising sign or structure be erected except those which are exempted development, without prior approval of Planning Authority.

 REASON: In the interest of the proper planning and development of the area.
- of The applicant shall be responsible for improvements to the private side access lane serving the proposed development, including resurfacing and the provision of kerbing. Details in this regard, including a programme of implementation shall be submitted for the written agreement of the Planning Authority before any development commences.

 NOTE: The applicant is advised to consult with the Council's Roads
 - Department before submitting any proposals for compliance with this condition.
- 06 REASON: In the interest of the proper planning and development of the area.
- 07 The existing entrance off the Naas Road shall be closed off permanently before the occupation of the office or warehouse development permitted by this decision.
- 07 REASON: In the interest of the proper planning and development of the

Dublin County Council Comhairle Chontae Atha Cliath

Planning Department

Bloc 2, Ionad Bheatha na hEireann, Block 2, Irish Life Centre, Sraid na Mainistreach Iacht, Lower Abbey Street, Baile Atha Cliath 1. Dublin 1. Telephone. (01)724755 Fax. (01)724896

Reg.Ref. 91A/1427 Decision Order No. P/ 4832 /91

Page No: 0004 area.

- 08 Before any development commences the applicant shall submit, for the written agreement of the Planning Authority, proposals to discourage or avoid on-street car or lorry parking along the Naas Road frontage of the site.
- 08 REASON: In the interest of the proper planning and development of the area.

NOTE: Compliance with one or more of the conditions of this permission may result in material alterations to the development as initially proposed and, accordingly, may require the submission of a further planning application.

Dublin Sounty Council Comhairle Chontae Atha Cliath

Planning Department

Bloc 2, Ionad Bheatha na hEireann, Block 2, Irish Life Centre, Sraid na Mainistreach lacht, Lower Abbey Street, Baile Atha Cliath 1. Dublin 1. Telephone. (01)724755 Fax. (01)724896

Register Reference: 91A/1427

Date : 3rd September 1991

LOCAL GOVERNMENT (PLANNING AND DEVELOPMENT) ACTS, 1963 TO 1983

For the attention of:

N.R.

Development : Demolition of single storey residential unit to rear

of site, erection of single storey warehouse with associated offices and production area to first floor

LOCATION : Fox & Geese, Naas Road, Dublin 22

Applicant : Packaging Industries Limited

App. Type : PERMISSION

With reference to above application received on 30th August 1991, please ensure that the Site Notice submitted with this application is displayed on site, as required by the Local Government (Planning and Development) Regulations 1977.

Yours faithfully,

for PRINCIPAL OFFICER

Dublia County Council Comhairle Chontae Atha Cliath

Planning Department

Block 2, Irish Life Centre, Sraid na Mainistreach lacht,

Telephone. (01)724755

Lower Abbey Street,

Baile Atha Cliath 1.

Fax. (01)724896

Dublin 1.

Building Control Department, Liffey House, Tara Street, Dublin 1. Telephone:773066

Date : 3rd September 1991

Bloc 2, Ionad Bheatha na hEireann,

Register Reference: 91A/1427

LOCAL GOVERNMENT (PLANNING AND DEVELOPMENT) ACTS, 1963 TO 1990

Dear Sir/Madam,

DEVELOPMENT: Demolition of single storey residential unit to rear of site, erection of single storey warehouse with associated offices and production area to first floor and separate two storey office development to rear of

existing buildings. Permission to include elevational change to existing buildings fronting onto Naas Road

LOCATION : Fox & Geese, Naas Road, Dublin 22

APPLICANT : Packaging Industries Limited

APP. TYPE : PERMISSION

With reference to the above, I acknowledge receipt of your application received on 30th August 1991.

Yours faithfully,

for PRINCIPAL OFFICER

The Ambrose Kelly Group, Fleming Court, Fleming's Place, Dublin 4

Displin County Council Comhairle Chontae Átha Cliath

Planning Application Form/ Bye - Law Application Form

PLEASE READ INSTRUCTIONS AT BACK BEFORE COMPLETING FORM. ALL QUE	STIONS MUST BE ANSWERED
. Application for Permission Outline Permission Approval Place in appropriate box Approval should be sought only where an outline permission was previously granted. Outline retention of structures or continuances of uses.	
Postal address of site or building Packaging Industries Limited, Fox & Ge (If none, give description Dublin 72.	
Packaging Industries Limited	
Address For & Geese, Nags Road, Dublin 22.	Tel. No. 508759
Name and address of The Ambrose Kelly Group, Fleming Court,	ming's Place,
person or firm responsible for preparation of drawings	Tel No. 607511
for preparation of drawings	Flemina's Place.
Name and address to which The Ambrose Kelly Group, Fleming Court, notifications should be sent Dublin 4.	
Dublin 4. Brief description ofDemolition ofDemoliticalDemolition ofDemolition ofDemolit	ion.of.2 . storey.offices
proposed development and associated warehouse building and elevation	change to existing.
Method of drainage Existing separate systems 8. Source of Water Supply 20	Existing Mains
. In the case of any building or buildings to be retained on site, please state:-	1 250 7
(a) Present use of each floor Warehouse with Associated Offices or use when last used.	- LACE
(b) Proposed use of each floor Warehouse with Associated Offices	S
O Does the proposal involve demolition, partial demolition YI	5S
(a) Area of Site	Sq. m.
(h) Floor area of proposed development	Sq. m.
(c) Floor area of buildings proposed to be retained within site	Sq. m.
2.State applicant's legal interest or estate in site Freehold Owner	
(i.e. freehold, leasehold, etc.)	
3.Are you now applying also for an approval under the Building Bye Laws? Yes No Place in appropriate box.	in your proposal
4 Please state the extent to which the Draft Building Regulations have been taken in account	m your proposer.
The Draft Building Regulations have been fully taken into	
5.List of documents enclosed with	
application. See Covering Letter	
	08/
6.Gross floor space of proposed development (See back)	.,
N/A Classical of Development	
Fee Payable £ 2,550.00 Basis of Calculation	e & £40 demolition
	00/00/01
Signature of Applicant (or his Agent)	ate30/08/91
FOR OFFICE USE ONL	RECEIVED
Register Reference 3, 12.0	
Amount Received £	30 AUG 1991
Receipt No	RE
1815	L

LOCAL GOVERNMENT (PLANNING & DEVELOPMENT) REGULATIONS 1977 to 1984.

Outline of requirements for applications for permission or Approval under the Local Government (Planning & Development) 1963 to 1983. The Planning Acts and Regulations made thereunder may be purchased from the Government Publications Sales Office, Sun Alliance House, Molesworth Street, Dublin 2.

- Name and Address of applicant.
- Particulars of the interest held in the land or structure, i.e. whether freehold, leasehold, etc. 2.
- The page of a newspaper, circulating in the area in which the land or structure is situate, containing the required statutory notice. 3. The newspaper advertisement should state after the heading Co. Dublin.
 - (a) The address of the structure or the location of the land.
 - (b) The nature and extent of the development proposed. If retention of development is involved, the notice should be worded accordingly. Any demolition of habitable accommodation should be indicated.
 - The name of the applicant.
 - NB, Applications must be received within 2 weeks from date of publication of the notice.
- Four (4) sets of drawings to a stated scale must be submitted. Each set to include a layout or block plan, proposed and existing services to be shown on this drawing, location map, and drawings of relevant floor plans, elevations, sections, details of type and location of septic tank (if applicable) and such other particulars as are necessary to identify the land and to describe the works or structure to which the application relates (new work to be coloured or otherwise distinguished from any retained structures). Buildings, roads, boundaries and other features bounding the structure or other land to which the application relates shall be shown on site plans or layout plans. The location map should be of scale not less than 1: 2500 and should indicate the north point. The site of the proposed development must be outlined in red. Plans and drawings should indicate the name and address of the person by whom they were prepared. Any adjoining lands in which the applicant has an interest must be outlined in blue.
- In the case of a proposed change of use of any structure or land, requirements in addition to 1, 2, & 3 are.
 - (a) a statement of the existing use and the proposed use, or, where appropriate, the former use and the use proposed.
 - (b) (i) Four (4) sets of the drawings to a stated scale must be submitted. Each set to consist of a plan or location map (marked or coloured in red so as to identify the structure or land to which the application relates) to a scale of not less than 1:2500 and to indicate the North point. Any adjoining lands in which the application has an interest must be outlined in blue.
 - (ii) A layout and a survey plan of each floor of any structure to which the application relates.
 - (c) Plans and drawings should indicate the name and address of the person by whom they were prepared.
- Applications should be addressed to: Dublin County Council, Planning Department, Irish Life Centre, Lr. Abbey Street, Dublin 1, Tel. 724755.

SEPTIC TANK DRAINAGE: Where drainage by means of a septic tank is proposed, before a planning application is considered, the applicant may be required to arrange for a trial hole to be inspected and declared suitable for the satisfactory percolation of septic tank effluent. The trial hole to be dug seven feet deep at or about the site of the septic tank. Septic tanks are to be in accordence with I.I.R.S. S.R. 6:75.

INDUSTRIAL DEVELOPMENT:

The proposed use of an industrial premises should, where possible, be stated together with the estimated number of employees, (male and female). Details of trade effluents, if any, should be submitted.

Applicants to comply in full with the requirements of the Local Government (Water Pollution) Act,1977 in particular the licencing provisions of Sections 4 and 16.

BUILDING BYE-LAW APPLICATIONS

PLANNING APPLICATIONS

		•			
CLASS			CLAS	S	•
NO.	DESCRIPTION	FEE	NO.	DESCRIPTION	FEE
1.	Provision of dwelling House/Flat.	£32.00 each	Α	Dwelling (House/Flat)	£55.00 each
2.	Domestic extensions/other improvements.	£16.00	В	Domestic Extension	
3.	Provision of agricultural buildings (See Regs.)	£40.00 minimum		(improvement/alteration)	£30.00 each
4.	Other buildings (i.e. offices, commercial, etc.)	£1.75 per sq. metre	C	Building — Office/	£3.50 per m²
	•	(Min. £40.00)		Commercial Purposes	(min, £70.00)
5.	Use of land (Mining, deposit or waste)	£25.00 per 0.1 ha	D.	Agricultural	£1.00 per m²
	·	(Min £250.00)	ļ -	Buildings/Structures	in excess of
6.	Use of land (Camping, parking, storage)	£25.00 per 0.1 ha	1		300 sq. metres
		(Min. £40.00)	1		(min £70.00)
7.	Provision of plant/machinery/tank or	£25.00 per 0.1 ha			(Max £300.00)
	other structure for storage purposes.	(Min. £100.00) "	Ε	Petrol Filling Station	£200.00
8.	Petrol Filling Station.	£100.00	F	Development or	£9.00 per 0.1 ha
9.	Advertising Structures.	£10.00 per m²]	Proposals not coming	(£70.00 min.)
		(min £40.00)		within any of the	
10.	Electricity transmission lines,	£25.00 per 1,000m		foregoing classes.	5 500.00
		(Min. £40.00)			Min. Fee £30.00
11,	Any other development.	£5.00 per 0.1 ha			Max. Fee £20,000
		(Min. £40.00)			

Cheques etc. should be made payable to: Dublin County Council.

Gross Floor space is to be taken as the total floor space on each floor measured from the inside of the external walls. For full details of Fees and Exemptions see Local Government (Planning and Development) (Fees) Regulations 1984.

DUBLIN COUNTY COUNCIL STREET DUBLIN 1	l this real at the second
	in the second
	TANK TETT - WATER
£ 2550.00	
m Packaging highest view HD.	Springer 1991
Maas Ref.	
Of grades	beingPounds
Gelse	Kox and
Cashier Cashier	S. CAREY Principal Office Cassy

"APPLICATION TO PLANNING AUTHORITY"

Planning Permission is being sought for demolition of single storey residential unit to rear of site, erection of single storey warehouse with associated offices and production area to first floor and separate two storey office development to rear of existing buildings.

Permission to include elevational change to existing buildings fronting onto Naas Road on behalf of Packaging Industries Limited, Fox and Geese, Naas Road, Dublin 12.

æfchitects

29 August 1991

Date

Ourref

KB/SG1/B031(004)

Your ref

Dublin County Council, Planning Department, Block 2, Irish Life Centre, Lower Abbey Street, DUBLIN 1. the ambrose kelly group

ambrose kelly chairman

paul keenan B.Arch MRIAI

michael lyons B.A. Dip.Arch

vernon leahy B.Arch

bernard lynch DipArch. Tech RIAI(Tech)

patrick j reid B.Arch MRIAI

john r giltrap F.Inst.D

Manufaction ACC 1

3 0 AUG 1991

9/A/1/

Re:-

PROPOSED WAREHOUSE & ASSOCIATED OFFICE BUILDING AT FOX & GEESE, NAAS ROAD, DUBLIN 12 FOR PACKAGING INDUSTRIES LIMITED

Dear Sir.

We wish to apply for Planning Permission for demolition of single-storey derelict residential unit to rear of site, construction of warehouse building with associated offices and production area to first floor and separate two-storey office development to rear of existing buildings. Permission to include elevational change to existing building fronting onto Naas Road on behalf of Packaging Industries Limited, Fox & Geese, Naas Road, Dublin 12.

We would also like to take this opportunity to receive agreement on specific user consent. The use associated with this development would be light industrial. Packaging Industries Limited are involved in the manufacturing of printed paper bags, labels, storage and disbribution of a variety of plastic containers along with associated offices.

Cont/d...

Fleming Court, Fleming's Place, Dublin 4 Telephone 01 607511 Fax 01 607620 Station House, Station Road, London SE20 7BE Telephone 081 659 1516 Fax 081 676 8955 Previous to this application, we have had meetings with both the Area Planning Officer and the Road Engineer. In both meetings the proposed development was tabled and discussed. All requirements from both parties have been fully incorporated into the development.

This application is necessitated by the fact that at present, Packaging Industries Limited conduct their main business from the existing buildings on site. They also have necessity to lease two other premises in adjoining industrial estates for storage facilities and extra office accommodation needed to provide proper customer service. With this application they wish now to consolidate their premises to one location in order to improve their business performance.

The existing entrance off the Naas Road is to be shut off permanently in order to avoid any hindrance to traffic leaving the site via the private side access lane.

The new car park to the front of the site will have 10 spaces allocated solely to customer use, again to avoid obstruction on the Naas Road.

Enclosed with our application is the following documentation:-

1. Completed Application Form.

2. Cheque for the sum of £2,550.00 calculated on the following basis:

Office Gross Floor Area	=	1115 sq. m. 295 sq. m.
TOTAL	=	1410 sq. m.
1410 sq. m. @ £1.75/m. sq. Plus elevational change to	· -	£2,467.50
existing buildings Plus Demolition of Residential Unit	=	£ 40.00 £ 40.00
TOTAL	=	£2.550.00

- 3. 4 no. copies of drawings B031 (P1) 01, 02 and 03.
- 4. Copy of site planning notice (to be displayed on site from 30/8/91 1/10/91).

5. Covering Letter

6. A staff survey has been included to show the parking requirement needed for this development by our client.

Cont/d...

Trusting that the information enclosed in our application will be of help to you in making your final decision. Should you require any further information, please do not hesitate to contact the undersigned at the above telephone number.

Yours faithfully,

Kenneth Byrne Dipl Arch (Tech)
THE AMBROSE KELLY GROUP

Encls.

Date

30 August 1991

KB/AF1/B031(005)

Our ref

Your ref

the ambrose kelly group

ambrose kelly chairman paul keenan B. Arch MRIAI michael lyons B.A. Dip. Arch vernon leahy B.Arch bernard lynch DipArch. Tech RIAI(Tech) patrick j reid B.Arch MRIAI john r giltrap F. Inst. D

STAFF CAR PARKING REQUIREMENT FOR PROPOSED DEVELOPMENT AT PACKAGING INDUSTRIES LIMITED FOX & GEESE NAAS ROAD DUBLIN 22

Present Staff on site	=	23
Present no. car park requirement	==	9
Present Staff off site	==	15
Present no. car park requirement	==	10
Proposed staff on proposed development	=	40
Proposed staff car parking requirement	==	25-30
Customer only spaces	=-	10
Total no. of spaces	=	40
No. car parking spaces provided	·· =	69
Development Plan standards @ 3 cars per 100 m sq gross floor space	=	70
- · ·		•

Production Area.

Paper Ream Storage.

Production Storage and Distribution.

<u>First FLoor and</u> <u>Roof Plans</u>

9214 - 13

The Ambrose Kelly Group

24 HOLLES STREET DUBLIN 2

DATE JAN 1992

24 HOLLES STREET DUBLIN 2

TELEPHONE: 766343 • 762398

FACSIMILE 610825

DATE JAN 1992

SCALE 1:50

ARCHITECT

The Ambrose Kelly Group.

9214 - 12

<u>A — A</u>

B — B

DBFL
Packaging Industries Ltd.

CONSULTING
CIVIL & STRUCTURAL
ENGINEERS

DRG TITLE
OFFICE BUILDING

SECTIONS A- A B- B

24 HOLLES STREET DUBLIN 2
TELEPHONE 766343•762398
FACSIMILE 610825

ARCHITECT
The Ambrose Kelly Group

SCALE 1: 50 1: 10
DATE JAN 1992

PROJECT
Packaging Industries Ltd.

ARCHITECT
The Ambrose Kelly Group

DBFL	PROJECT Packaging Industries Ltd.					
CONSULTING CIVIL & STRUCTURAL	DRG TITLE					
ENGINEERS	ROOF PLAN PART SHEET 2.					
24 HOLLES STREET DUBLIN 2 TELEPHONE 766343+762398 FACSIMILE 610825	The Ambrose Kelly Group					
SCALE 1:50 DATE JAN.1992	9214 - 7					

DBFL	PROJECT Packaging Industries Ltd
CONSULTING CIVIL & STRUCTURAL ENGINEERS	GROUND FLOOR PLAN PART SHEET 2.
24 HOLLES STREET DUBLIN 2 TELEPHONE 766343+762398 FACSIMILE 610825	The Ambrose Kelly Group
1:50 DATE JAN 1992	9214 - 4

FLASHING DETAIL TO ADJOINING BUILDING.

SECTION C-C

PROPOSED FACTORY + OFFICES - FOX & GEESE NAAS RD. DUBLIN 12. PACKAGING INDUSTRIES LTD. title SECTION C-C. the ambrose kelly group drawing no B031 (P1) 006. Fleming Court, Fleming's Place, Dublin 4 JAN 92 1:20 1:50. Telephone 01 607511 Fax 01 607620

PERSONAL RECEIVED

0 GFEB 1992

REG No. .912/1422...

THE DRAWING CENERE 911502

copyright reserved 🗘 19

Botes copyright reserved © 19 no dimensions are to be scaled from this drawing 215 MM SOLID CONCRETE BLOCK PARTY WALL TO ENG. DETAILS. STATION OFFICE. 200 MM CAST INSITU FLOOR SLAB TO OFFICE AREA TO ENG. DETALS. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 215 MM SOLID CONCRETE BLOCK 900 OFFICE. 100 MM STUD PARTITION WITH 75 X 50 MM STUD WITH 12.5 MM GYPSUM PLASTER BOTH SIDES.

1 NO. STEP DOTTED LINE INDICATES
1/2 HOUR FIRE STOP PROTECTION TO CORRIDOR. 215 MM CONCRETE BLOCKWORK PLASTERED AND PAINTED. 200 MM CONCRETE FLOOR SLAB OVER OFFICES TO ENGINEERS DESIGN AND DETAIL. 100 MM CAVITY WITH 50 MM INSULTION. 100 MM BLOCKWORK EXTERNAL LEAF WITH 25 MM SAND AND CEMENT RENDERING. BOARDROOM. OFFICE. OFFICE. 100 MM STUD PARTITION WITH 75 X 50 MM STUD WITH 12.5 MM GYPSUM PLASTER BOTH SIDES. 215 MM SOLID CONCRETE BLOCK WALL PLASTERED BOTH SIDES. MILD STEEL EXTERNAL DOUBLE GLAZED ALUMINIUM WINDOWS COLOUR COATED STAIR TO MEET FIRE ALL WINDOWS TO HAVE D.P.C.'S
AT HEAD, JAMBS AND CILL'S.
CILL'S TO BE WRAPED BACK,
SIDES AND UNDER IN ACCORDANCE OFFICERS REQUIRMENTS. AND INSTALLED WITH PERMAVENTS. PRIME AND PAINT. WITH REG'S, 100 MM ● PVC

DUDING COUNTY COUNTY SOCIETY SOCIETY PREMITTED DEPT. HORISTY SOCIETY PREMITTED APPLICATION RECEIVED

ROOF CONSTRUCTION. BLUE / BLACK CONCRETE ROOF TELES ON 50 X 38 MM TREATED ROOF BATTENS AT REQUIRED CTS. IN ACCORDANCE WITH MANUFACTURES INSTRUCTIONS ON UNTEARABLE SARKING FELT ON TRUSSED RAFTERS AT 800MM CTS BY SPECIALIST SUPPLIER.

275 MM CONCRETE FLOOR SLAB OVER SHOWROOM TO ENGINEERS DESIGN AND DETAIL.

100 MM CONCRETE BLOCK PLASTERED AND PAINTED. 100 MM CAVITY WITH

50 MM INSULATION, 100 MM BLOCK OUTER LEAF WITH SAND/CEMENT RENDERING.

13 MM FOILED BACKED PLASTER BOARD TO UNDERSME OF ROOF TRUSSES WITH 100 MM QUILT INSULATION BETWEEN CEN MG 1015719 CEILING JOIST'S.

PATENT EAVES VENTILATOR'S TO BE INSTALLED TO ALLOW ADEQUATE CROSS VENTILATION TO EACH AND EVERY ROOF VOID.

GROUND FLOOR PLAN.

150 MM # PVC ROUND RAIN WATER PIPE. DISCHARGE TO BIGT.

MILD STEEL EXTERNAL STAIR TO MEET FIRE OFFICER REQUIRMENTS.

THE DRAWING CENTRE 911502

TO BE PRIMED & PAINTED.

215 MM CONCRETE BLOCKWORK

100 MM BLOCKWORK EXTERNAL LEAF

PLASTERED AND PAINTED

50 MM INSULATION.

100 MM CAVITY WITH 50 MM

WITH 25 MM SAND / CEMENT RENDER.

OFFICE.

DOUBLE GLAZED ALUMINIUM

WINDOWS COLOUR COATED

ROUND RWP.

AND INSTALLED WITH PERMAVENTS.

ACCESS INTO EXISTING BUILDING. 1 HOUR FIRE DOOR SEPARATION.

MH SEALED

FEMALE

32 MM & WASTE FROM

WHE'S TO GT.

CONCRETE STAIR WITH MILD STEEL HANDRAE TO ENG. CAL'S TO LATER

215 MM SOLID CONCRETE BLOCK WALLS PLASTERED BOTH SIDES.

ACCESS INTO

SEPARATION.

200 MM CONCRETE SLAB OVER OFFICES TO ENGINEERS DESIGN AND DETAIL.

OFFICE.

ALL WINDOWS TO HAVE D.P.C.'S

SIDES AND UNDER IN ACCORDANCE

AT HEAD, JAMBS + CILLS.
CIL'S TO BE WRAPED BACK

100 MM SOLID CONCRETE

OFFICE.

13 MM PLASTER FINISH

BLOCKWORK WITH

BOTH SIDES.

EXISTING BUILDING.

& LOCKED HE

1/2 HOUR GLAZED FIRE DOORS TO LATER DETAIL.

275 MM CAST INSTU CONCRETE SLAB OVER SHOWROOM AREA TO ENGINEERS DESIGN AND DETAIL.

SHOWROOM.

150 MM CONCRETE FLOOR SLAB

150 MM LAYERS OF COMPACTED

TO ENGINEERS DETAILS ON 1000 G. VISQUEEN DPM. ON

TO SURFACE WATER DRAIN.

SEE DRG, NO. BO31 (P1) 01.

SEALED & MH

HEAVY DUTY MH

ENTRANCE LOBBY.

TO FOUL WATER DRAIN. SEE DRG. NO. BO31 PI) 01

215 MM CONCRETE BLOCKWORK PLASTEREDAND PAINTED INTERNALY.

ROUND RWP.

100 MM CAVITY WITH 50 MM INSULATION

WITH 25 MM SAND / CEMENT RENDERING.

100 MM BLOCKWORK EXTERNAL LEAF

DOUBLE GLAZED ALUMINUM WINDOWS
PVC COLOUR COATED AND FITTED

FIRST FLOOR PLAN.

24

Project PROPOSED FACTORY & OFFICES FOX & GEESE NAAS RD. DUBLIN 12 PACKAGING INDUSTRIES LTD. FLOOR PLANS TO OFFICES. the ambrose kelly group drawingno B031 (P1) 005. drawn KB Fleming Court, Fleming's Place, Dublin 4 date FEB '92 scale 1:50. Telephone 01 607511 Fax 01 607620

copyright reserved 🗘 19

moles copyright reserved © 19 no dimensions are to be scaled from this drawing P.V.C. COATED DOUBLE SKIPPROFLED ROLLER SHUTTRE TO BE COLOUR COATED AND INSTALLED TO HANDFACTURES DETAIL METAL DECK ON SHEETING RAILS ON CONCRETE STAIR TO ENGINEERS DETAIL STEEL PORTAL FRAME TO ENGINEERS SPEC 215mm BLOCKWORK CANTEEN. DOUBLE GLAZED ALUMINUM COLOUR COGATED WINDOWS WITH PERMAYENTS INSTALLED OPE TO BE CONNECTED TO FIRE ALARM DOTTED LINE INDICATES LINE OF 1 HOUR FIRE SEPERATION TO ROOF 12 HOUR OFFICE. 215mm BLOCK WALL CARRIED TO ROOF LEVEL AND FIRE STOP AT TOP WITH PATENT FIRE SEAL TO THOUR RATING ALL STEEL TO BE PIRE PROTECTED TO 1 HOUR RATING TO THE SATISFACTION OF 215mm CONCRETE BLOCKWORK BETWEEN COLUMNS. P.V.C. COATED DOUBLE SKIN INSULATION METAL DECK CLADDING ON SHEETING RAILS TO ENGINEERS SPEC 1 HOUR PIRE SHUTTER OVER OPE TO BE CONNECTED TO FIRE ALARM SYSTEM LABEL PRINTING PRODUCTION AREA. CONCRETE PLOOR SLAB TO VOID. ENGINEERS DESIGN AND TO DETAILS 215mm BLOCK WALL CARRIED TO I 215mm BLOCK WALL CARRIED TO ROOF LEVEL AND FIRE STOPPED ROOF LEVEL AND FIRE STOPPED DOUBLE GLAZED COLOUR COATED ALUMNUM WINDOW,-ALL WINDOW TO BE ROLLER SHUTTER DOOR
FITTED TO MANUFACTURES 215mm CONCR E BLOCKWORK BETWEEN COLUMNS . P.V.C. COATED DOUBLE SKIN INSULATED METAL DECK CLADDING ON SHEETING RAILS TO ENGINEERS SPEC. ROLLAR SHUTTER DOOR FITTED CONCRETE STAIRS TO 19910 CONCRETE BLOCKWORK WITH TO MANUFACTURES INSTRUCTIONS ENGINEERS DETAIL 215mm CONCRETE BLOCKWORK 25mm SAND/CEMENT RENDER 100mm CAVITY WITH 50mm INSULATION 199mm BLOCK INNER LEAF 215mm SOLID CONCRETE BLOCK WALL FIRST FLOOR PLAN. را 1400 ر 1000 ر 1000 ر 1000 ر 2650 م 2650 ر 1000 ر 1000 ر 1000 ر 1000 ر 1000 ر ALL STRUCTURAL STEEL TO BE CLAD IN 1 HOUR FIRE BOARD LINE OF STEEL PORTAL GVER TO ENGINEERS DESIGN AND DETAIL STRUCTURAL STEEL COLUMNS TO ENGINEERS DESIGN AND DETAILS CASED IN CONCRETE PAPER REAM STORAGE. 190mm BLOCKWORK EXTERNAL LEAF WITH 25mm SAND/CEMENT RENDER 100mm CAVITY WITH 50mm INSULATION 100mm BLDCKWORK INNER LEAF LINE OF POSSIBLE LOCATION 150mm CONCRETE SLAD ON 1600g VISQUEEN D.P.M. ON 150mm COMPACTED HARDCORE TO ENGINEERS DETAIL OF MACHINERY LIME OF FRST FLOOR OVER LINE OF FIRST PLOOR OVER ROLLER SHUTTER DOOR FITTED IN ACCORDANCE WITH MANUFACTURES INSTRUCTIONS PAPER BAG PRODUCTION AREA. 150mm CONCRETE PLOOR SLAB WITH A RUST PROOF FINISH ON 250mm DEEP CONCRETE SLAB TO ENGINEERS DETAIL IN AREA OF MACHINERY TO ENGINEERS 1000g VISQUEEN D.P.M. ON 150mm COMPACTED HARDCORE 1 HOUR FIRE DOOR SELF CLOOSING TO STORE TO ENGINEERS DETAIL LINE OF STEEL PORTAL FRAME TO ENGINEERS DETAIL OVER 215nm SOLID CONCRETE
BLOCK TO STORE WITH
150nm CONCRETE ROOF SLAB
TO ENGINEERS DETAIL PROVIDE 2 No 225x225
VENTS TOP + BOTTOM TO 1300 900 2300 ALLOW COMPLETE VENTILATION OF STORE ROOM STRUCTURAL STEEL TO INK & GLUE STORAGE. 23900 NOTE: ALL STEELWORK TO SEE DETAIL DRG. No. BO31 (P1) 866 BE FIRE PROJECTED TO 215mm SOLID CONCRETE BLOCKWORK 100mm CAVITY WITH 1 HOUR FIRE RATING USING A PATENT 50mm INSULATION 108mm BLOCKWORK OUTER LEAF WITH 25mm SAND/CEMENT RENDER EXISTING BUILDING GROUND FLOOR PLAN, PROPOSED FACTORY + OFFICES - FOX & GEESE NAAS RD DUBLIN 12. PACKAGING INDUSTRIES LTD. FLOOR PLANS TO WAREHOUSE.

1

THE DRAWING CENTRE 9E150?

Title FLOOR PLANS TO WAREHOUSE.

drawing no B031 - (P1) 004

drawn KB date JAN 92 scale 1:100

Telephone 01 607511 Fax 01 607620

copyright reserved © 19

copyright reserved (19 no dimensions are to be scaled from this drawing STANDARD PROFILED METAL GUTTER. PROPILED INSULATION METAL SHEETING TO LATER COLOUR SELECTION. 215 MM PARTY WALL TO BE CARRIED UP OVER ROOF OF EXISTING HOUSE AND METAL SHEET CLADOING TO BE FLASHED ON TO EXISTING ROOF, SMOOTH RENDERED FINISH ON INSULATED CAVITY BLOCK WALLS. EXISTING HOUSE UNIT. SITE LOCATION MAP. REV: A REVISED FOR BYE LAWS 31/1/92. K.B. PROPOSED WAREHOUSE AND OFFICES, FOX AND GEESE, DUBLIN 12. PACKAGING INDUSTRIES LTD. SECTIONS, ELEVATION, BLOCK PLAN. drawingno the ambrose kells group B031 (P1) 03 A drawn KB date 28.8.91. scale 1:100; 1:1000. Fleming Court, Fleming v Place, Dublin 4

Telephone 01 607511 Fax 01 607620

constinks exceeded by

SIDE ELEVATION TO WAREHOUSE.

SECTION B-B.

copyright reserved © 19
no dimensions are to be scaled from this drawing

SIDE ELEVATION TO WAREHOUSE.

SITE LOCATION MAP.

copyright reserved © 19

	revisions	. 1	! !		.	1	1	1		1	1	1	1	. 1			
	project	PROP	OSED	WA	REHOUSE	AND	OFFI	CES,	FOX	AND	GEESE,	DUE	BLIN	1 2.			
	client	PACK	AGINO	3 INC	USTRIES	LTD.			2	*	c h	•	+ 4		+ 6		
	title	SECTIONS, ELEVATION, BLOCK PLAN.									architects the ambrose kelly group						
i !	drawing	n o	B031	(P1)					Fla		n bros Court, Fl			•	•		
	drawn	KB		date	28.8.91,	scale	1:100;	1:100	0.		one 01 6						

Tes.